Ilyas Himmich, El Mehdi Er Raqabi, Nizar El Hachemi, Issmaïl El Hallaoui, Abdelmoutalib Metrane et François Soumis
Rapport technique (2022)
Un lien externe est disponible pour ce documentAbstract
The parameter configuration problem consists of finding a parameter configuration that provides the most effective performance by a given algorithm. This paper addresses this problem for MILP solvers through a new multi-phase tuner based on the iterated local search metaheuristic. The goal is to find near-optimal, if not optimal, configuration(s) for efficiently solving large-scale industrial optimization problems. Instead of tuning in the entire configuration space induced by the set of parameters, the proposed tuner focuses on a small pool of parameters that is enhanced dynamically with new promising ones. Furthermore, it uses statistical learning to benefit from the dynamically accumulated information to forbid less promising parameter combinations. A computational study on a widely used commercial CPLEX solver with instances from the MIPLIB library and a real large-scale optimization problem highlights the promising potential of the tuner.
Mots clés
parameter configuration problem; automatic algorithm configuration; MILP solvers; metaheuristics; machine learning; CPLEX
Département: | Département de mathématiques et de génie industriel |
---|---|
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | Fonds de recherche du Québec - Nature et technologies (FRQNT), IVADO, GERAD |
URL de PolyPublie: | https://publications.polymtl.ca/52753/ |
Titre de la revue: | Cahiers du Gerad (vol. G-2022, no 53) |
Numéro du rapport: | 2022-53 |
URL officielle: | https://www.gerad.ca/fr/papers/2983 |
Date du dépôt: | 18 avr. 2023 14:58 |
Dernière modification: | 25 sept. 2024 16:43 |
Citer en APA 7: | Himmich, I., Er Raqabi, E. M., El Hachemi, N., El Hallaoui, I., Metrane, A., & Soumis, F. (2022). MPILS: an automatic tuner for MILP solvers. (Rapport technique n° 2022-53). https://www.gerad.ca/fr/papers/2983 |
---|---|
Statistiques
Aucune statistique n'est disponible.