<  Back to the Polytechnique Montréal portal

Automated Analysis of Retinal and Choroidal OCT and OCTA Images in AMD

Charles Bélanger Nzakimuena

Masters thesis (2020)

[img] Restricted to: Repository staff only until 13 October 2021.
Cite this document: Bélanger Nzakimuena, C. (2020). Automated Analysis of Retinal and Choroidal OCT and OCTA Images in AMD (Masters thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/5234/
Show abstract Hide abstract

Abstract

La dégénérescence maculaire liée à l'âge (DMLA) est une maladie oculaire progressive qui se manifeste principalement au niveau de la rétine externe et de la choroïde. Le projet de recherche vise à déterminer si des mesures obtenues à partir d'images de tomographie par cohérence optique (OCT) et d'angiographie OCT (OCTA) peuvent être utilisées afin de fournir de nouvelles informations sur des biomarqueurs de la DMLA, ainsi qu’une méthode de détection précoce de la maladie. À cette fin, un appareil permettant l’OCT et l’OCTA a été utilisé pour imager des sujets DMLA précoces et intermédiaires, et des sujets témoins. À la configuration sélectionnée de l’appareil OCT, chaque acquisition d'un œil fournit un volume de données qui est constitué de 300 images transversales appelées B-scan. Au total, des acquisitions de 10 yeux de sujets atteints de DMLA précoce et intermédiaire (3000 images B-scan) et un cas de DMLA néovasculaire, 12 yeux de sujets âgés de plus de 50 ans (3600 images B-scan) et 11 yeux de sujets âgés de moins de 50 ans (3300 images B-scan) ont été obtenues. Cinq méthodes d'extraction de caractéristiques ont été reproduites ou développées afin de déterminer si des différences significatives au niveau de l’œil pouvaient être observées entre les sujets atteints de DMLA précoce et intermédiaire et les sujets témoins d’âge similaire. Grâce à des tests non paramétriques, il a été établi que deux méthodes connues d'extraction de biomarqueurs de la DMLA (analyse d’absence de signal de débit sanguin au niveau de la choriocapillaire et une méthode de segmentation des drusen) produisent des mesures qui montrent des différences significatives entre les groupes, et qui sont représentées de façon uniforme à travers le plan frontal de l’œil. Il a ensuite été souhaité de tirer parti des mesures et de générer un modèle de classification de la DMLA interprétable basé sur l'apprentissage automatique au niveau des B-scans. Des spectres de fréquence résultant de la transformé de Fourier rapide de séries spatiales dérivées de mesures considérées comme représentatives des deux biomarqueurs ont été obtenues, et utilisées comme caractéristiques pour former un classifieur de type forêt aléatoire et un classifieur de type forêt profonde. L'analyse en composantes principales (PCA) a été utilisée pour réduire la dimensionnalité de l’espace des caractéristiques, et la performance des modèles et l'importance des prédicteurs ont été évaluées. Une nouvelle méthode a été conçue qui permet une reconstruction 3D automatisée et une évaluation quantitative de la structure des signaux OCTA et ainsi des vaisseaux rétiniens. Des mesures représentatives des drusen et de la choriocapillaire ont été utilisées pour créer des modèles interprétables pour la classification de la DMLA précoce et intermédiaire. Alors que la prévalence mondiale de la DMLA augmente et que les appareils OCT deviennent plus disponibles, un plus grand nombre de personnes hautement qualifiées est nécessaire pour interpréter les informations médicales et fournir les soins cliniques appropriés. L'analyse et le classement du niveau de sévérité de la DMLA par des experts par le biais d'images OCT sont coûteux et prennent du temps. Les modèles proposés pourraient servir à automatiser la détection de la DMLA, même lorsqu'elle est asymptomatique, et signaler à un ophtalmologue la nécessité de surveiller et de traiter la condition avant la survenue de pertes graves de la vision. Les modèles sont transparents et sont en mesure de fournir une classification à partir d’une seule image transversale. Par conséquent, l'outil diagnostic automatisé pourrait également être utilisé dans des situations où seules des données médicales partielles sont disponibles ou lorsque l'accès aux ressources de soins de santé est limité.----------ABSTRACT Age-related macular degeneration (AMD) is a progressive eye disease which manifests primarily at the outer retina and choroid. The research project aimed to determine whether measures obtained from optical coherence tomography (OCT) and OCT angiography (OCTA) images could be used to provide novel AMD biomarker insight and an early disease detection method. To that end, an OCT and OCTA enabled device was used to image AMD subjects and controls. At the selected device scan size, each scan of one eye gathered using an OCT device provides a volume of data which is constructed of 300 cross-sectional images termed B-scans. In total, scans of 10 eyes from subjects with early and intermediate AMD (3,000 B-scan images) and a case of neovascular AMD, 12 eyes from subjects over the age of 50 years old (3,600 B-scan images), and 11 eyes from subjects under the age of 50 years old (3,300 B-scan images) were obtained. Five feature extraction methods were either reproduced or developed in order to determine if significant differences could be observed between the early and intermediate AMD subjects and control subjects at the eye level. Through non-parametric testing it was established that two AMD biomarker extraction methods (choriocapillaris flow voids analysis and a drusen segmentation method) produced measures which showed significant differences between groups, and which were also uniformly represented across the frontal plane of the eye. It was then desired to leverage the measures and generate a B-scan level, interpretable machine learning-based AMD classification model. Frequency spectrums resulting from the fast Fourier transforms of spatial series derived from measures believed to be representative of the two biomarkers were obtained and used as features to train a random forest and a deep forest classifier. Principal component analysis was used to reduce dimensionality of the feature space, and model performance and predictor importance were assessed. A new method was devised which allows automated 3D reconstruction and quantitative evaluation of retinal flow signal patterns and incidentally of retinal microvasculature. Measures representative of drusen and choriocapillaris were leveraged to create interpretable models for the classification of early and intermediate AMD. As the worldwide prevalence of AMD increases and OCT devices are becoming more available, a greater number of highly trained personnel is needed to interpret medical information and provide the appropriate clinical care. Expert analysis and grading of AMD through OCT images are expensive and time consuming. The models proposed could serve to automate AMD detection, even when it is asymptomatic, and signal to an ophthalmologist the need to monitor and treat the condition before the occurrence of severe visual loss. The models are transparent and provide classification from single cross-sectional images. Therefore, the automated diagnosis tool could also be used in situations where only partial medical data are available, or where there is limited access to health care resources.

Open Access document in PolyPublie
Department: Institut de génie biomédical
Academic/Research Directors: Farida Cheriet and Santiago Costantino
Date Deposited: 13 Oct 2020 11:54
Last Modified: 13 Oct 2020 11:54
PolyPublie URL: https://publications.polymtl.ca/5234/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only