Thèse de doctorat (2020)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (5MB) |
Résumé
Les transmissions à base de courant continu sont capables de répondre mieux que les transmissions traditionnelles à base de courant alternatif aux enjeux de nos jours tels que l'intégration des énergies renouvelables, les difficultés avec l'installation des nouvelles lignes aériennes pour les raisons socio-environnementaux, la gestion des flux de puissance sur le réseau électrique. Ceci est grâce aux systèmes de contrôle performants et rapides, à un niveau de fiabilité accrue des composants utilisés, à l'efficacité énergétique des technologies de pointe, telles que les convertisseurs modulaires multiniveaux (Modular Multilevel Converter ou MMC en anglais). Ces avantages ont contribué à une croissance rapide du nombre de transmissions à courant continu à travers le monde dans les dernières années, avec les plans d'établir des réseaux multi-terminaux d'un niveau supérieur aux réseaux électriques traditionnels dans le but de les renforcer. Les outils de simulation numériques sont nécessaires pour faciliter et accélérer la mise en œuvre de ce type de projets d'envergure. Ils permettent d'analyser et d'étudier les systèmes électriques de plus en plus complexes et par conséquent d'éviter les problèmes opérationnels, d'augmenter la fiabilité et l'efficacité des réseaux électriques. La complexité accrue des réseaux électriques modernes qui contiennent les composants à base de l'électronique de puissance tels que les liaisons à courant continu exige une recherche sur les outils de simulation et les modèles avancés. Ainsi, cette thèse se focalise sur le développement d'un cadre pour les simulations précises et rapides des liaisons à courant continu. À la suite d'une revue de la littérature il est démontré que la modélisation des MMCs a un impact particulièrement important sur la précision et l'accélération des simulations et par conséquent une grande partie de cette thèse est dédiée aux différentes méthodes pour réduire le temps de simulation et améliorer la précision des résultats dans les études avec les MMCs. Le cœur du sujet commence par la présentation de la modélisation des MMC hybrides et leurs systèmes de contrôle. Les modèles sont classés en quatre catégories selon le niveau de précision : le modèle détaillé permet de représenter les non-linéarités au niveau des composants semiconducteurs.
Abstract
Compared to the traditional alternating current technology-based electrical grids, High-Voltage Direct Current (HVDC) transmission systems can more effectively respond to the challenges of the modern power grid related to the integration of renewable energy sources, difficulty to install new overhead lines due to socio-environmental reasons, and power flow management. This is mainly due to high performance of control systems, fast response times, reliable components and energy efficiency of the state-of-the-art HVDC technologies of today, such as the Modular Multilevel Converter (MMC). These advantages have contributed to the rapid growth in the number of HVDC projects in recent years with plans of having overlay HVDC grids that can reinforce the existing electrical grids. To facilitate and accelerate the implementation of large-scale HVDC projects, it is required to use numerical simulation tools. Such tools allow to perform advanced analysis of involved electrical systems for preventing operating problems, increasing robustness and efficiency in power grids. The increased level of complexity of modern power grids with power electronics-based components, such as HVDC, requires research on advanced simulation tools and models. Therefore, this thesis aims to develop a framework allowing for accurate modeling and fast simulations of HVDC projects. After analysis of existing literature, the areas with high potential impact on accuracy and acceleration of electromagnetic transient simulations are found, and it is the modeling of MMCs that is considered in this thesis. Thus, a significant part of this thesis is dedicated to research on efficient modeling techniques that allow to reduce simulation time and improve accuracy for MMC-based HVDC systems. The modeling aspects and control systems of hybrid MMCs are presented first. The MMC models used in electromagnetic transient simulations are grouped into four categories. The detailed model represents the nonlinear current-voltage characteristics of semiconductor switches. The detailed equivalent model represents the switches as two-value resistances: a small value for the closed state and a large value for the open state. The arm equivalent model assumes all capacitors in each arm have identical voltages, so a single equivalent capacitor is used to represent the whole arm, thus greatly reducing the computational burden of the model.
Département: | Département de génie électrique |
---|---|
Programme: | génie électrique |
Directeurs ou directrices: | Jean Mahseredjian, Hani Saad et Ulas Karaagac |
URL de PolyPublie: | https://publications.polymtl.ca/5216/ |
Université/École: | Polytechnique Montréal |
Date du dépôt: | 13 oct. 2020 11:40 |
Dernière modification: | 18 oct. 2024 11:21 |
Citer en APA 7: | Stepanov, A. (2020). Modeling of Direct Current Grid Equipment for the Simulation and Analysis of Electromagnetic Transients [Thèse de doctorat, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/5216/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements