<  Retour au portail Polytechnique Montréal

fNIRS improves seizure detection in multimodal EEG-fNIRS recordings

Parikshat Sirpal, Ali Kassab, Philippe Pouliot, Dang Khoa Nguyen et Frédéric Lesage

Article de revue (2019)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database-a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction.

Mots clés

*deep neural networks; *electroencephalography-functional near-infrared spectroscopy; *epilepsy; *functional brain imaging; *seizure detection

Sujet(s): 2500 Génie électrique et électronique > 2500 Génie électrique et électronique
6400 Recherche en sciences de la vie liées à la santé publique et aux maladies humaines > 6400 Recherche en sciences de la vie liées à la santé publique et aux maladies humaines
Département: Département de génie électrique
Centre de recherche: Autre
Organismes subventionnaires: Natural Sciences and Engineering Research Council of Canada, Canadian Institutes of Health Research
Numéro de subvention: RGPIN-2017-06140, 396317
URL de PolyPublie: https://publications.polymtl.ca/5138/
Titre de la revue: Journal of Biomedical Optics (vol. 24, no 5)
Maison d'édition: SPIE
DOI: 10.1117/1.jbo.24.5.051408
URL officielle: https://doi.org/10.1117/1.jbo.24.5.051408
Date du dépôt: 13 juil. 2022 11:00
Dernière modification: 27 sept. 2024 22:43
Citer en APA 7: Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D. K., & Lesage, F. (2019). fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. Journal of Biomedical Optics, 24(5), 051408 (9 pages). https://doi.org/10.1117/1.jbo.24.5.051408

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document