<  Retour au portail Polytechnique Montréal

Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption

Josué Costa-Baptista, Edith-Roland Fotsing, Jacky Mardjono, Daniel Therriault et Annie Ross

Article de revue (2022)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

A comprehensive procedure to design and manufacture multilayered microchannels presenting competitive mechanical properties, effective subwavelength and near perfect broadband sound absorption in targeted frequency ranges is presented. The acoustic properties of microchannels are predicted with the Johnson-Champoux-Allard-Lafarge (JCAL) model. The JCAL parameters are calculated with the Two-scale Asymptotic Method (TAM) and the sound absorption coefficient of multilayered microchannels is simulated with the transfer matrix method (TMM). The simplex Nelder-Mead optimization method is used to find the size of the channels and the stacking sequence leading to effective acoustic absorption for three different frequency ranges (500–2400 Hz, 2400–6500 Hz and 500–6500 Hz). 30 mm-thick samples with up to 30-layers of unobstructed and non interconnected channels and microchannels were successfully produced via fused filament fabrication (FFF). The minimum channel size is 100 µm which is very appropriate to produce micro-perforated panels or acoustic liners with optimal absorption and different degrees of freedom. Multilayered microchannels with absorption average up to 0.87 and noise reduction coefficient (NRC) up to 0.49 were produced. The multilayered microchannels offer a good compromise between effective acoustic properties and useful mechanical properties compared to other 3D printed acoustic structures and can be considered as viable candidates for applications where structural resistance is required.

Mots clés

acoustic modeling; sound absorbing materials; design and optimization; additive manufacturing; multifunctional structures

Sujet(s): 2100 Génie mécanique > 2100 Génie mécanique
Département: Département de génie mécanique
Centre de recherche: LAVA - Laboratoire d'analyse vibratoire et acoustique
LM2 - Laboratoire de Mécanique Multi-échelles
CREPEC - Centre de recherche sur les systèmes polymères et composites à haute performance
Organismes subventionnaires: Safran Aircraft Engines, NSERC / CRSNG, Polytechnique Montreal - Doctoral training support grant
URL de PolyPublie: https://publications.polymtl.ca/50866/
Titre de la revue: Additive Manufacturing (vol. 55)
Maison d'édition: Elsevier
DOI: 10.1016/j.addma.2022.102777
URL officielle: https://doi.org/10.1016/j.addma.2022.102777
Date du dépôt: 18 avr. 2023 14:58
Dernière modification: 09 nov. 2024 21:39
Citer en APA 7: Costa-Baptista, J., Fotsing, E.-R., Mardjono, J., Therriault, D., & Ross, A. (2022). Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption. Additive Manufacturing, 55, 102777 (17 pages). https://doi.org/10.1016/j.addma.2022.102777

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document