<  Back to the Polytechnique Montréal portal

Using advanced spectroscopy and organic matter characterization to evaluate the impact of oxidation on cyanobacteria

Saber Moradinejad, Caitlin M. Glover, Jacinthe Mailly, Tahere Zadfathollah Seighalani, Sigrid Peldszus, Benoit Barbeau, Sarah Dorner, Michèle Prévost and Arash Zamyadi

Article (2019)

Open Acess document in PolyPublie and at official publisher
Open Access to the full text of this document
Published Version
Terms of Use: Creative Commons Attribution
Download (571kB)
Show abstract
Hide abstract


Drinking water treatment plants throughout the world are increasingly facing the presence of toxic cyanobacteria in their source waters. During treatment, the oxidation of cyanobacteria changes cell morphology and can potentially lyse cells, releasing intracellular metabolites. In this study, a combination of techniques was applied to better understand the effect of oxidation with chlorine, ozone, potassium permanganate, and hydrogen peroxide on two cell cultures (Microcystis, Dolichospermum) in Lake Champlain water. The discrepancy observed between flow cytometry cell viability and cell count numbers was more pronounced for hydrogen peroxide and potassium permanganate than ozone and chlorine. Liquid chromatography with organic carbon and nitrogen detection was applied to monitor the changes in dissolved organic matter fractions following oxidation. Increases in the biopolymer fraction after oxidation with chlorine and ozone were attributed to the release of intracellular algal organic matter and/or fragmentation of the cell membrane. A novel technique, Enhanced Darkfield Microscopy with Hyperspectral Imaging, was applied to chlorinated and ozonated samples. Significant changes in the peak maxima and number of peaks were observed for the cell walls post-oxidation, but this effect was muted for the cell-bound material, which remained relatively unaltered.

Uncontrolled Keywords

Bacterial Load; Chlorine/pharmacology; Cyanobacteria/cytology/*drug effects; Flow Cytometry; Hydrogen Peroxide/pharmacology; Lakes/microbiology; Microscopy; Oxidants/*pharmacology; Oxidation-Reduction; Ozone/pharmacology; Potassium Permanganate/pharmacology; Spectrum Analysis; Water Pollutants; *cell morphology; *cyanobacteria; *enhanced darkfield microscopy/hyperspectral imaging; *intracellular organic matter; *oxidation

Subjects: 1500 Environmental engineering > 1500 Environmental engineering
1500 Environmental engineering > 1501 Water quality, pollution
Department: Department of Civil, Geological and Mining Engineering
Research Center: Other
Funders: Genome Quebec and Genome Canada: Algal Blooms, Treatment, Risk Assessment, Prediction and Prevention through Genomics (ATRAPP) Project, CRSNG/NSERC, Fonds de recherche du Quebec - Nature et technologies
PolyPublie URL: https://publications.polymtl.ca/5034/
Journal Title: Toxins (vol. 11, no. 5)
Publisher: MDPI
DOI: 10.3390/toxins11050278
Official URL: https://doi.org/10.3390/toxins11050278
Date Deposited: 20 Jan 2022 12:37
Last Modified: 07 Apr 2024 17:07
Cite in APA 7: Moradinejad, S., Glover, C. M., Mailly, J., Seighalani, T. Z., Peldszus, S., Barbeau, B., Dorner, S., Prévost, M., & Zamyadi, A. (2019). Using advanced spectroscopy and organic matter characterization to evaluate the impact of oxidation on cyanobacteria. Toxins, 11(5), 278 (14 pages). https://doi.org/10.3390/toxins11050278


Total downloads

Downloads per month in the last year

Origin of downloads


Repository Staff Only

View Item View Item