Ding Ma, Dominique Orban et Michael A. Saunders
Rapport technique (2021)
Un lien externe est disponible pour ce documentAbstract
Algorithm NCL is designed for general smooth optimization problems where first and second derivatives are available, including problems whose constraints may not be linearly independent at a solution (i.e., do not satisfy the LICQ). It is equivalent to the LANCELOT augmented Lagrangian method, reformulated as a short sequence of nonlinearly constrained subproblems that can be solved efficiently by IPOPT and KNITRO, with warm starts on each subproblem. We give numerical results from a Julia implementation of Algorithm NCL on tax policy models that do not satisfy the LICQ, and on nonlinear least-squares problems and general problems from the CUTEst test set.
Mots clés
constrained optimization; second derivatives; algorithm NCL; Julia
Département: | Département de mathématiques et de génie industriel |
---|---|
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
URL de PolyPublie: | https://publications.polymtl.ca/49436/ |
Numéro du rapport: | 2021-02 |
URL officielle: | https://www.gerad.ca/en/papers/G-2021-02 |
Date du dépôt: | 18 avr. 2023 15:00 |
Dernière modification: | 25 sept. 2024 16:38 |
Citer en APA 7: | Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Rapport technique n° 2021-02). https://www.gerad.ca/en/papers/G-2021-02 |
---|---|
Statistiques
Aucune statistique n'est disponible.