![]() | Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de Michael A. Saunders figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur Michael A. Saunders. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835. Lien externe
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for general constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1836-A1859. Lien externe
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for constrained nonlinear optimization. (Rapport technique n° G-2019-27). Lien externe
Estrin, R., Orban, D., & Saunders, M. A. (2019). Euclidean-norm error bounds for SYMMLQ and CG. SIAM Journal on Matrix Analysis and Applications, 40(1), 235-253. Lien externe
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (Rapport technique n° G-2019-04). Lien externe
Estrin, R., Orban, D., & Saunders, M. A. (2019). LNLQ: An iterative method for least-norm problems with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(3), 1102-1124. Lien externe
Estrin, R., Orban, D., & Saunders, M. A. (2019). LSLQ: An iterative method for linear least-squares with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(1), 254-275. Lien externe
Estrin, R., Orban, D., & Saunders, M. A. (2018). LNLQ: An iterative method for least-norm problems with an error minimization property. (Rapport technique n° G-2018-40). Lien externe
Ghannad, A., Orban, D., & Saunders, M. A. (2021). Linear systems arising in interior methods for convex optimization: a symmetric formulation with bounded condition number. Optimization Methods and Software, 37(4), 1344-1369. Lien externe
Ghannad, A., Orban, D., & Saunders, M. A. (2020). A symmetric formulation of the linear system arising in interior methods for convex optimization with bounded condition number. (Rapport technique n° G-2020-37). Lien externe
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2024). An inexact augmented Lagrangian algorithm for unsymmetric saddle-point systems. (Rapport technique n° G-2024-30). Lien externe
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206. Lien externe
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913. Lien externe
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). On GSOR, the generalized successive overrelaxation method for double saddle-point problems. (Rapport technique n° G-2022-35). Lien externe
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). A semi-conjugate gradient method for solving unsymmetric positive definite linear systems. (Rapport technique n° G-2022-25). Lien externe
Montoison, A., Orban, D., & Saunders, M. A. (2025). MinAres: An Iterative Solver for Symmetric Linear Systems. SIAM Journal on Matrix Analysis and Applications, 46(1), 509-529. Lien externe
Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Rapport technique n° G-2023-40). Lien externe
Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Rapport technique n° 2021-02). Lien externe
Ma, D., Orban, D., & Saunders, M. A. (janvier 2020). A Julia Implementation of Algorithm NCL for Constrained Optimization [Communication écrite]. 5th International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOV 2020), Muscat, Oman. Lien externe
Ma, D., Judd, K. L., Orban, D., & Saunders, M. A. (janvier 2017). Stabilized optimization via an NCL algorithm [Communication écrite]. 4th International Conference on Numerical Analysis and Optimization (NAO-IV 2017), Muscat, Oman. Lien externe