![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for general constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1836-A1859. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for constrained nonlinear optimization. (Technical Report n° G-2019-27). External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). Euclidean-norm error bounds for SYMMLQ and CG. SIAM Journal on Matrix Analysis and Applications, 40(1), 235-253. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (Technical Report n° G-2019-04). External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). LNLQ: An iterative method for least-norm problems with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(3), 1102-1124. External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). LSLQ: An iterative method for linear least-squares with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(1), 254-275. External link
Estrin, R., Orban, D., & Saunders, M. A. (2018). LNLQ: An iterative method for least-norm problems with an error minimization property. (Technical Report n° G-2018-40). External link
Ghannad, A., Orban, D., & Saunders, M. A. (2021). Linear systems arising in interior methods for convex optimization: a symmetric formulation with bounded condition number. Optimization Methods and Software, 37(4), 1344-1369. External link
Ghannad, A., Orban, D., & Saunders, M. A. (2020). A symmetric formulation of the linear system arising in interior methods for convex optimization with bounded condition number. (Technical Report n° G-2020-37). External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2024). An inexact augmented Lagrangian algorithm for unsymmetric saddle-point systems. (Technical Report n° G-2024-30). External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206. External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913. External link
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). On GSOR, the generalized successive overrelaxation method for double saddle-point problems. (Technical Report n° G-2022-35). External link
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). A semi-conjugate gradient method for solving unsymmetric positive definite linear systems. (Technical Report n° G-2022-25). External link
Ma, D., Orban, D., & Saunders, M. A. (2025). Solving slgorithm NCL's subproblems: The need for interior methods. (Technical Report n° G-2025-33). External link
Montoison, A., Orban, D., & Saunders, M. A. (2025). MinAres: An Iterative Solver for Symmetric Linear Systems. SIAM Journal on Matrix Analysis and Applications, 46(1), 509-529. External link
Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Technical Report n° G-2023-40). External link
Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Technical Report n° 2021-02). External link
Ma, D., Orban, D., & Saunders, M. A. (2020, January). A Julia Implementation of Algorithm NCL for Constrained Optimization [Paper]. 5th International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOV 2020), Muscat, Oman. External link
Ma, D., Judd, K. L., Orban, D., & Saunders, M. A. (2017, January). Stabilized optimization via an NCL algorithm [Paper]. 4th International Conference on Numerical Analysis and Optimization (NAO-IV 2017), Muscat, Oman. External link
Ma, D., Judd, K., Orban, D., & Saunders, M. A. (2017). Stabilized optimization via an NCL algorithm. (Technical Report n° G-2017-108). External link