<  Back to the Polytechnique Montréal portal

Stress in thin films and coatings: current status, challenges, and prospects

Grégory Abadias, Eric Chason, Jozef Keckes, Marco Sebastiani, Gregory B. Thompson, Etienne Barthel, Gary L. Doll, Conal E. Murray, Chris H. Stoessel and Ludvik Martinu

Article (2018)

[img]
Preview
Published Version
Terms of Use: Creative Commons Attribution.
Download (3MB)
Cite this document: Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., ... Martinu, L. (2018). Stress in thin films and coatings: current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2). doi:10.1116/1.5011790
Show abstract Hide abstract

Abstract

The issue of stress in thin films and functional coatings is a persistent problem in materials science and technology that has congregated many efforts, both from experimental and fundamental points of view, to get a better understanding on how to deal with, how to tailor, and how to manage stress in many areas of applications. With the miniaturization of device components, the quest for increasingly complex film architectures and multiphase systems and the continuous demands for enhanced performance, there is a need toward the reliable assessment of stress on a submicron scale from spatially resolved techniques. Also, the stress evolution during film and coating synthesis using physical vapor deposition (PVD), chemical vapor deposition, plasma enhanced chemical vapor deposition (PECVD), and related processes is the result of many interrelated factors and competing stress sources so that the task to provide a unified picture and a comprehensive model from the vast amount of stress data remains very challenging. This article summarizes the recent advances, challenges, and prospects of both fundamental and applied aspects of stress in thin films and engineering coatings and systems, based on recent achievements presented during the 2016 Stress Workshop entitled “Stress Evolution in Thin Films and Coatings: from Fundamental Understanding to Control.” Evaluation methods, implying wafer curvature, x-ray diffraction, or focused ion beam removal techniques, are reviewed. Selected examples of stress evolution in elemental and alloyed systems, graded layers, and multilayer-stacks as well as amorphous films deposited using a variety of PVD and PECVD techniques are highlighted. Based on mechanisms uncovered by in situ and real-time diagnostics, a kinetic model is outlined that is capable of reproducing the dependence of intrinsic (growth) stress on the grain size, growth rate, and deposited energy. The problems and solutions related to stress in the context of optical coatings, inorganic coatings on plastic substrates, and tribological coatings for aerospace applications are critically examined. This review also suggests strategies to mitigate excessive stress levels from novel coating synthesis perspectives to microstructural design approaches, including the ability to empower crack-based fabrication processes, pathways leading to stress relaxation and compensation, as well as management of the film and coating growth conditions with respect to energetic ion bombardment. Future opportunities and challenges for stress engineering and stress modeling are considered and outlined.

Open Access document in PolyPublie
Subjects: 2000 Science et technologie des matériaux > 2000 Science et technologie des matériaux
2000 Science et technologie des matériaux > 2010 Films minces et interfaces
3100 Physique > 3100 Physique
Department: Département de génie physique
Research Center: Non applicable
Funders: U.S. Department of Energy, Office of Science, Basic Energy Science, National Science Foundation, Division of Materials Research, European Association - Project OYSTER, Army Research Office, CRSNG\NSERC - University-industry research partnership grants, CRSNG\NSERC Multisectorial Industrial Research Chair in Coatings and Surface Engineering, Society of Vacuum Coaters (SVC), American Vaccum Society, Advanced Surface Engineering Division (ASED)
Grant number: DE-SC0008799, 1602491, 760827, W911NF1310436
Date Deposited: 03 Apr 2020 10:12
Last Modified: 04 Apr 2020 01:20
PolyPublie URL: https://publications.polymtl.ca/4732/
Document issued by the official publisher
Journal Title: Journal of Vacuum Science & Technology A (vol. 36, no. 2)
Publisher: AIP Publishing
Official URL: https://doi.org/10.1116/1.5011790

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only