Grégory Abadias, Eric Chason, Jozef Keckes, Marco Sebastiani, Gregory B. Thompson, Etienne Barthel, Gary L. Doll, Conal E. Murray, Chris H. Stoessel et Ludvik Martinu
Article de revue (2018)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (3MB) |
Abstract
The issue of stress in thin films and functional coatings is a persistent problem in materials science and technology that has congregated many efforts, both from experimental and fundamental points of view, to get a better understanding on how to deal with, how to tailor, and how to manage stress in many areas of applications. With the miniaturization of device components, the quest for increasingly complex film architectures and multiphase systems and the continuous demands for enhanced performance, there is a need toward the reliable assessment of stress on a submicron scale from spatially resolved techniques. Also, the stress evolution during film and coating synthesis using physical vapor deposition (PVD), chemical vapor deposition, plasma enhanced chemical vapor deposition (PECVD), and related processes is the result of many interrelated factors and competing stress sources so that the task to provide a unified picture and a comprehensive model from the vast amount of stress data remains very challenging. This article summarizes the recent advances, challenges, and prospects of both fundamental and applied aspects of stress in thin films and engineering coatings and systems, based on recent achievements presented during the 2016 Stress Workshop entitled “Stress Evolution in Thin Films and Coatings: from Fundamental Understanding to Control.” Evaluation methods, implying wafer curvature, x-ray diffraction, or focused ion beam removal techniques, are reviewed. Selected examples of stress evolution in elemental and alloyed systems, graded layers, and multilayer-stacks as well as amorphous films deposited using a variety of PVD and PECVD techniques are highlighted. Based on mechanisms uncovered by in situ and real-time diagnostics, a kinetic model is outlined that is capable of reproducing the dependence of intrinsic (growth) stress on the grain size, growth rate, and deposited energy. The problems and solutions related to stress in the context of optical coatings, inorganic coatings on plastic substrates, and tribological coatings for aerospace applications are critically examined. This review also suggests strategies to mitigate excessive stress levels from novel coating synthesis perspectives to microstructural design approaches, including the ability to empower crack-based fabrication processes, pathways leading to stress relaxation and compensation, as well as management of the film and coating growth conditions with respect to energetic ion bombardment. Future opportunities and challenges for stress engineering and stress modeling are considered and outlined.
Sujet(s): |
2000 Science et technologie des matériaux > 2000 Science et technologie des matériaux 2000 Science et technologie des matériaux > 2010 Films minces et interfaces 3100 Physique > 3100 Physique |
---|---|
Département: | Département de génie physique |
Organismes subventionnaires: | U.S. Department of Energy, Office of Science, Basic Energy Science, National Science Foundation, Division of Materials Research, European Association - Project OYSTER, Army Research Office, CRSNG\NSERC - University-industry research partnership grants, CRSNG\NSERC Multisectorial Industrial Research Chair in Coatings and Surface Engineering, Society of Vacuum Coaters (SVC), American Vaccum Society, Advanced Surface Engineering Division (ASED) |
Numéro de subvention: | DE-SC0008799, 1602491, 760827, W911NF1310436 |
URL de PolyPublie: | https://publications.polymtl.ca/4732/ |
Titre de la revue: | Journal of Vacuum Science & Technology A (vol. 36, no 2) |
Maison d'édition: | AIP Publishing |
DOI: | 10.1116/1.5011790 |
URL officielle: | https://doi.org/10.1116/1.5011790 |
Date du dépôt: | 03 avr. 2020 10:12 |
Dernière modification: | 26 sept. 2024 12:30 |
Citer en APA 7: | Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., & Martinu, L. (2018). Stress in thin films and coatings: current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2). https://doi.org/10.1116/1.5011790 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions