Maha Gmira, Michel Gendreau, Andrea Lodi et Jean-Yves Potvin
Article de revue (2020)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
The travel time to proceed from one location to another in a network is an important consideration in many urban transportation settings ranging from the planning of delivery routes in freight transportation to the determination of shortest itineraries in advanced traveler information systems. Accordingly, accurate travel time predictions are of foremost importance. In an urban environment, vehicle speeds, and consequently travel times, can be highly variable due to congestion caused, for instance, by accidents or bad weather conditions. At another level, one also observes daily patterns (e.g., rush hours), weekly patterns (e.g., weekdays versus weekend), and seasonal patterns. Capturing these time-varying patterns when modeling travel speeds can provide an immediate benefit to commercial transportation companies that distribute goods, since it allows them to better optimize their routes and reduce their environmental footprint. This paper presents the first part of a project aimed at optimizing time-dependent delivery routes in an urban setting. It focuses on the prediction of travel speeds using as input GPS traces of commercial vehicles collected over a significant period of time. The proposed algorithmic framework is made of a number of macro-steps where different machine learning and data mining methods are applied. Computational results are reported on real data to empirically demonstrate the accuracy of the obtained predictions.
Renseignements supplémentaires: | Chaire d’excellence en recherche du Canada sur la science des données pour la prise de décision en temps réel |
---|---|
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 1600 Génie industriel > 1603 Logistique 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport |
Organismes subventionnaires: | NSERC / CRSNG |
URL de PolyPublie: | https://publications.polymtl.ca/45204/ |
Titre de la revue: | EURO Journal on Transportation and Logistics (vol. 9, no 4) |
Maison d'édition: | Elsevier B.V. |
DOI: | 10.1016/j.ejtl.2020.100006 |
URL officielle: | https://doi.org/10.1016/j.ejtl.2020.100006 |
Date du dépôt: | 18 avr. 2023 15:00 |
Dernière modification: | 04 oct. 2024 00:45 |
Citer en APA 7: | Gmira, M., Gendreau, M., Lodi, A., & Potvin, J.-Y. (2020). Travel speed prediction based on learning methods for home delivery. EURO Journal on Transportation and Logistics, 9(4), 100006 (16 pages). https://doi.org/10.1016/j.ejtl.2020.100006 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions