<  Retour au portail Polytechnique Montréal

Travel speed prediction based on learning methods for home delivery

Maha Gmira, Michel Gendreau, Andrea Lodi et Jean-Yves Potvin

Article de revue (2020)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

The travel time to proceed from one location to another in a network is an important consideration in many urban transportation settings ranging from the planning of delivery routes in freight transportation to the determination of shortest itineraries in advanced traveler information systems. Accordingly, accurate travel time predictions are of foremost importance. In an urban environment, vehicle speeds, and consequently travel times, can be highly variable due to congestion caused, for instance, by accidents or bad weather conditions. At another level, one also observes daily patterns (e.g., rush hours), weekly patterns (e.g., weekdays versus weekend), and seasonal patterns. Capturing these time-varying patterns when modeling travel speeds can provide an immediate benefit to commercial transportation companies that distribute goods, since it allows them to better optimize their routes and reduce their environmental footprint. This paper presents the first part of a project aimed at optimizing time-dependent delivery routes in an urban setting. It focuses on the prediction of travel speeds using as input GPS traces of commercial vehicles collected over a significant period of time. The proposed algorithmic framework is made of a number of macro-steps where different machine learning and data mining methods are applied. Computational results are reported on real data to empirically demonstrate the accuracy of the obtained predictions.

Renseignements supplémentaires: Chaire d’excellence en recherche du Canada sur la science des données pour la prise de décision en temps réel
Sujet(s): 1600 Génie industriel > 1600 Génie industriel
1600 Génie industriel > 1603 Logistique
2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
Organismes subventionnaires: NSERC / CRSNG
URL de PolyPublie: https://publications.polymtl.ca/45204/
Titre de la revue: EURO Journal on Transportation and Logistics (vol. 9, no 4)
Maison d'édition: Elsevier B.V.
DOI: 10.1016/j.ejtl.2020.100006
URL officielle: https://doi.org/10.1016/j.ejtl.2020.100006
Date du dépôt: 18 avr. 2023 15:00
Dernière modification: 04 oct. 2024 00:45
Citer en APA 7: Gmira, M., Gendreau, M., Lodi, A., & Potvin, J.-Y. (2020). Travel speed prediction based on learning methods for home delivery. EURO Journal on Transportation and Logistics, 9(4), 100006 (16 pages). https://doi.org/10.1016/j.ejtl.2020.100006

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document