POLYTECHNIQUE

PCLYPUBLIE

A [
UNIVERSITE )

Polytechnique Montréal D'INGENIERIE

Titre: Travel speed prediction based on learning methods for home
Title: delivery

Auteurs:
Authors:

Date: 2020
Type: Article de revue / Article

Référence: Gmira, M., Gendreau, M., Lodi, A., & Potvin, J.-Y. (2020). Travel speed prediction
... based on learning methods for home delivery. EURO Journal on Transportation and
Citation: | ogistics, 9(4), 100006 (16 pages). https://doi.org/10.1016/j.ejtl.2020.100006

Maha Gmira, Michel Gendreau, Andrea Lodi, & Jean-Yves Potvin

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) N
PolyPublie URL: https://publications.polymtl.ca/45204

. Version officielle de I'éditeur / Published version

Version: Révisé par les pairs / Refereed

Conditions d’utilisation

Terms of Use: CC BY-NC-ND

Document publié chez I’éditeur officiel
Document issued by the official publisher

Titre de la revue:

Journal Title: EURO Journal on Transportation and Logistics (vol. 9, no. 4)

Maison d’édition:
Publisher:

URL officiel: : o
Official URL. Nttps://doi.org/10.1016/.jtl.2020.100006

. Z . | © 2020 The Authors. Published by Elsevier B.V. on behalf of Association of European
Mentll?n Ilega.lef Operational Research Societies (EUROQ). This is an open access article under the CC BY-
egal notice: Nc.ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Elsevier B.V.

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://doi.org/10.1016/j.ejtl.2020.100006
https://publications.polymtl.ca/45204/
https://doi.org/10.1016/j.ejtl.2020.100006

EURO Journal on Transportation and Logistics 9 (2020) 100006

Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.journals.elsevier.com/euro-journal-on-transportation-and-logistics

Travel speed prediction based on learning methods for home delivery R

Maha Gmira®“9, Michel Gendreau®‘, Andrea Lodi ®“¢, Jean-Yves Potvin %"

Check for
updates

@ Département de mathématiques et de génie industriel, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada
Y Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
¢ Chaire d’excellence en recherche du Canada sur la science des données pour la prise de décision en temps réel, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville,

Montréal, Québec, H3C 3A7, Canada

4 Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal,

Québec, H3C 3J7, Canada

ABSTRACT

The travel time to proceed from one location to another in a network is an important consideration in many urban transportation settings ranging from the planning of
delivery routes in freight transportation to the determination of shortest itineraries in advanced traveler information systems. Accordingly, accurate travel time
predictions are of foremost importance. In an urban environment, vehicle speeds, and consequently travel times, can be highly variable due to congestion caused, for
instance, by accidents or bad weather conditions. At another level, one also observes daily patterns (e.g., rush hours), weekly patterns (e.g., weekdays versus
weekend), and seasonal patterns. Capturing these time-varying patterns when modeling travel speeds can provide an immediate benefit to commercial transportation
companies that distribute goods, since it allows them to better optimize their routes and reduce their environmental footprint.

This paper presents the first part of a project aimed at optimizing time-dependent delivery routes in an urban setting. It focuses on the prediction of travel speeds
using as input GPS traces of commercial vehicles collected over a significant period of time. The proposed algorithmic framework is made of a number of macro-steps
where different machine learning and data mining methods are applied. Computational results are reported on real data to empirically demonstrate the accuracy of the

obtained predictions.

1. Introduction

Travel speed prediction is a major issue in most urban transportation
models, whether they address the transportation of people or goods. Most
variations in travel speeds, and hence in travel times, result from traffic
congestion, which can be classified as recurrent, due to well-known
patterns, and non-recurrent, due to accidents, construction, emergen-
cies, special events and bad weather, among others. Accordingly, there is
a need for accurate predictions of travel speeds (times) under recurrent
and non-recurrent congestion. It is important to note that better pre-
dictions may significantly help individuals and transportation companies
operating in urban areas in planning their activities, and possibly lead to
substantial reductions in actual travel times and greenhouse gas
emissions.

With the increasing amount of available data collected from probe
vehicles, smart phone applications, and other location technologies, the
challenge in travel speed prediction is no longer related to the quantity of
data, but rather to the modeling and extraction of useful information
from such data. In this context, there is a great potential for models and

algorithms based on real data that can accurately predict travel speeds at
various times of the day for different types of streets and roads.

The research presented in this paper is part of an integrated project
aimed at capturing predictable patterns in travel speeds for commercial
vehicles in the city of Montreal with the objective of optimizing time-
dependent routes for a fleet of delivery vehicles. This paper focuses on
making the best travel speed predictions possible using data collected
from mobile electronic devices. The data used in this study come from a
software development company that produces vehicle routing algorithms
to plan the home delivery of large items (appliances, furniture) to cus-
tomers. This partner has delivery routes with more than 2,500,000 de-
livery points, serviced by nearly 200,000 routes. Data are collected using
automatic vehicle location systems where GPS receivers are interfaced
with Global System for Mobile communications (GSM) modems. The
system records point locations as latitude-longitude pairs, in addition to
instantaneous speed, date and time.

From a methodological standpoint, the problem-solving approach is
made of a number of algorithmic ingredients that realize the following
macro-steps:
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. Data preparation and representation
. Size reduction and clustering

. Missing data imputation

. Prediction

A WN

The literature for addressing those macro-steps in the context of speed
prediction is not unified and leads to a number of possible algorithmic
choices. Thus, the best choices had to be determined with special
attention to the context and to our specific data. In other words, our
contribution is tailored to the data: we had to solve the problem for the
company that provided us with the data, as any other data-driven pre-
dictive or prescriptive application. Although the algorithmic ingredients
are not really novel, the contribution of the paper lies in their effective
combination to create a methodology, as defined by the four macro-steps
above, that is general for speed prediction and works well on our dataset.
The algorithmic ingredients resulting in the best performances may not
be the same for different datasets, but this does not affect the method-
ology itself. We expect other researchers and practitioners to follow such
a methodology and potentially augment it with additional macro-steps if
their datasets require so.

The rest of the paper is organized as follows. We first review the
literature related to our work in Section 2. Then, our methodology for
travel speed prediction is reported. The creation of a database of speed
patterns from GPS traces is described in Section 3. Then, techniques to
reduce the size of the database and cluster arcs into similarity classes are
explained in Section 4. This is followed in Section 5 by a description of
the neural network model used for travel speed prediction. Computa-
tional results are reported in Section 6 on a number of real-world in-
stances. Finally, a framework for a real-time delivery system that
integrates the neural network model is proposed in Section 7. The
conclusion follows.

2. Literature review

Most urban traffic control systems rely on short-term traffic predic-
tion and a huge literature has been published on this topic in the last
decades due, in particular, to the advent of intelligent transportation
systems. Given that these systems are highly dependent on accurate
traffic information, they must collect a large amount of data (locations,
speeds and individual itineraries).

Travel speed prediction at a given time typically relies on historical
travel speed values and a set of exogenous variables. Methods to predict
traffic information are classified in (Van Hinsbergen et al., 2007) as 1)
naive (i.e., without any model assumption), 2) parametric, 3)
non-parametric and 4) a combination of the last two, called hybrid
methods. The first three methods are described in the following.

2.1. Naive methods

Naive methods are by far the easiest to implement and to use because
they do not require an underlying model. However, one main drawback
is their lack of accuracy. In (Van Hinsbergen et al., 2007), naive methods
are divided into instantaneous methods (based on data available at the
instant the prediction is performed), historical methods (based on his-
torical data) and mixed methods, where the latter combine characteris-
tics of historical and instantaneous methods. As a baseline for
comparison with other parametric methods, the work reported in (Smith
et al., 2002) uses a simple hybrid method where the travel speed forecast
is a function of the current traffic flow rate, as well as its historical
average at a given time of the day and day of the week. In (Wu et al.,
2004), the authors compare two methods for travel time prediction, one
based on data available at the instant the prediction is performed and one
based on historical data. Using the Relative Mean Error (RME) and the
Root Mean Squared Error (RMSE), these two approaches showed similar
performance, but were clearly outperformed by a more sophisticated
approach called Support Vector Regression (see Section 2.3).
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2.2. Parametric methods

Parametric methods use data to estimate the parameters of a model,
whose structure is predetermined. The most basic model is linear
regression, where the traffic variable V; to be predicted at a given time tis
a linear function of independent variables:

Vt = ﬂ() +ﬁ1X1 +ﬂ2X2 + ... +ﬁ;1X11 (1)

Different techniques are available to estimate the parameters j;, i =
1,..., n. Among parametric methods, we consider the Autoregressive
Moving Average model (ARMA) and its Integrated variant (ARIMA),
different smoothing techniques and the Kalman filter. They are presented
below.

2.2.1. Kalman filter

The Kalman filter is a very popular short-term traffic flow predic-
tion method. It allows the state variables to be updated continuously,
which is very important in time-dependent contexts. Some works
related to traffic state estimation are based on the original Kalman
filter (Kalman and Bucy, 1961), as well as its extension for non-linear
systems called the Extended Kalman Filter (EKF) (Julier and Uhlmann,
1997). The latter is particularly relevant since the travel times depend
on traffic conditions that are highly non-linear and dynamic, changing
over time and space. In (Wang and Papageorgiou, 2005), a freeway
state estimator is obtained by solving a macroscopic traffic flow model
with EKF. A new EKF based on online-learning is used in (Van Lint,
2008) to provide travel time information on freeways. Also, a dynamic
traffic assignment model, which is a non-linear state-space model, is
solved by applying three different extensions of the Kalman filter
(Antoniou et al., 2007).

In (Jula et al., 2008), the authors use traffic data on California
highways to predict travel times on arcs and estimate the arrival time at a
destination. First, travel times on arcs are predicted by feeding the Kal-
man filter with historical data. Then, this prediction is corrected and
updated with real time information using the Kalman filter’s
corrector-predictor form.

2.2.2. ARMA

To predict short-term traffic characteristics such as speed, flow or
travel time, ARMA time series models have been widely used. The
ARIMA(p’,q) model combines p’ autoregressive terms AR and ¢ moving
average terms MA, also known as the orders of the AR and MA compo-
nents. If we consider travel time prediction, the general formulation of
the ARMA(p’,q) model is:

P q
T(t) =Y alT(t—i)=e+ Y P 2
i=1 j=1

where the travel time T(t) at departure time ¢ is a linear function of the
travel times at previous instants, &,é&1,...,6_¢ are noise variables
anda;, §; are parameters, i = 1,...p%;j =1,...,q.

The ARIMA(p,d,q) model generalizes ARMA by addressing non-
stationary time series. It has non-negative integer parameters p, d, and
g, where p and g correspond to the AR and MA orders, and d is the degree
of differencing (i.e., the number of times the data are differenced). To
obtain the ARIMA(p,d,q) model, we first start with the ARMA(p’,q)
model, which can be rewritten as:

(1 - ia,ﬂ> T(t) = (1 + i/}’jﬂ) & 3)
i=1 j=1

where LT (t) = T(t —i) is the lag operator. In particular LT(t) = T(t — 1).
Assuming that the polynomial on the left-hand side of Equation (3) has a
unit root (i.e., factor (1 — L)) of multiplicity d, that is:
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P p—d
(1 - Z%L’) = <1 - Za,-L,-) (1-L)* 4
i=1 i=1

we obtain the ARIMA(p,d,q) model by settingp =p’— d:

(1 - zp:a,-y) (1-L)'T(t)= (1 + z,,: ﬂjy’> & 5)

In (Hamed et al., 1995), the authors use the Box-Jenkins approach
(Box and Jenkins, 1976) to develop a forecasting model based on
ARIMA from data collected in urban streets (i.e., 1-min traffic-volume
on each street during peak periods). After comparing several ARIMA
models, the one of order (0,1,1) yielded the best results in terms of
traffic volume forecasts. The authors in (Smith et al., 2002) compare a
seasonal ARIMA model, called SARIMA, with a non-parametric
regression model where the forecast generation method and
neighbor selection criteria are heuristically improved. The tests
showed that SARIMA performed better than the improved
non-parametric regression.

In (Williams and Hoel, 2003), the authors model traffic flow with
SARIMA (1,0,1) and SARIMA(0,1,1) models. Another SARIMA model is
reported in (Guo, 2005) to forecast traffic conditions over a short-term
horizon, based on 15-min traffic flow data. In this case, SARIMA out-
performed the k-Nearest Neighbor method (k-NN), described in Section
2.3.3.

2.3. Non-parametric methods

Non-parametric methods include non-parametric regression and
different types of neural networks. Non-parametric methods are also
known as data-driven methods, because they need data to determine not
only the parameters but also the model structure. Thus, the number and
types of parameters are unknown a priori. The main advantage of these
methods is that they do not require expertise in traffic theory, although
they need a lot of data.

The most popular non-parametric methods for traffic prediction are
the support vector machine, neural networks and non-parametric
regression.

2.3.1. Support vector machine

The Support Vector Machine (SVM) was first introduced in (Vapnik,
1999; Vladimir, 1995) and was used in many classification and regres-
sion studies. SVM is popular because it guarantees global minima, it deals
quite well with corrupted data and works for complex non-linear systems.
Support Vector Regression (SVR) is the application of SVM to time-series
forecasting.

In (Wu et al., 2004), the authors analyze the application of SVR for
travel time prediction. They used traffic data, obtained from an Intelli-
gent Transportation System, over a five weeks period. The first four
weeks correspond to the training set and the last week corresponds to the
testing set. Using a Gaussian kernel function and a standard SVR imple-
mentation, their method improved the Relative Mean Error (RME) and
the Root Mean Squared Error (RMSE) when compared to instantaneous
and historical travel time prediction methods. Due to its promising re-
sults, SVR has been used to predict traffic parameters such as traffic flow
or travel time. However, the classical SVR, like the one used in (Wu et al.,
2004), cannot be applied in real time because it requires a complete
model training each time a new record (data) is added. There are also
some variants of SVM for traffic prediction. In (Wang and Shi, 2013), the
authors report a hybrid model called the chaos-wavelet analysis SVM that
overcomes the need to choose a suitable kernel function. In the context of
traffic flow prediction for a large-scale road network (Yang et al., 2014),
SVM parameters are optimized by a parallel genetic algorithm, thus
yielding a Genetic Algorithm-Support Vector Machine (referred to as
GA-SVM).
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2.3.2. Neural networks

When considering data-driven methods, neural networks are among
the best for traffic forecasting because of their ability to learn non-linear
relationships among different features without any prior assumption.

The most widely used neural networks are called Multi-Layer Per-
ceptrons (MLPs). They are typically made of an input layer, one hidden
layer and an output layer, where each layer contains one or more units
(neurons). The units in the input layer are connected to those in the
hidden layer, while the units in the hidden layer are connected to those
in the output layer. The weights on these connections are adjusted
during the learning process using (input, target output) example pairs,
so as to produce an appropriate mapping between the inputs and the
target outputs. In (Chen et al., 2001), an MLP is used to predict traffic
flow from input data (speed, flow, occupancy) collected by detection
devices on a highway around the city of London. In this application, the
MLP and a radial basis function network performed better than all
ARIMA models considered. In (Vlahogianni et al., 2005), the authors
exploit a genetic algorithm to fine tune the parameters and the number
of hidden units in an MLP. Their model showed better generalization
abilities when tested with new inputs. More recently, the authors in
(Habtie et al., 2017) report the performance of an MLP with 15 hidden
units, trained with the Levenberg-Marquardt backpropagation algo-
rithm. Based on different error performance indicators, the MLP showed
good accuracy when predicting road speeds. In (Moniruzzaman et al.,
2016), an MLP is used to predict the time needed to cross the Ambas-
sador bridge, one of the busiest bridges at the Canada-US border. A
database of GPS records for a full year was used to train and test the
neural network.

As indicated in (Ma et al., 2015), Recurrent Neural Networks (RNNs)
are better suited for traffic forecasting tasks due to their ability to account
for sequential time-dependent data. Typically, the signal sent by the
hidden layer to the output layer at some time ¢ is also sent back to the
hidden layer. This signal is processed with the input signal at time ¢t + 1
to determine the internal state of the hidden layer. This internal state acts
as a memory and remembers useful time-dependent relationships among
data.

A specific class of RNNs, called Long Short-Term Memory network
(LSTM), is now widely used in the literature due to its proven ability to
learn long-term relationships in the data. In (Ma et al., 2015), LSTM is
compared to various RNNs and other statistical methods, namely:
Elman neural network, non-linear autoregressive with exogenous in-
puts (NARX) neural network, Time-Delay Neural Network (TDNN),
SVM, ARIMA and Kalman filter. The LSTM achieved the best perfor-
mances in terms of accuracy and stability. The work in (Tian and Pan,
2015) proposes an LSTM model for short-term traffic flow prediction,
which is compared with random walk, SVM, MLP and Stacked
AutoEncoder. The results showed the superiority of LSTM in terms of
prediction accuracy, ability to memorize long-term historical data and
generalization capabilities. In (Fu et al., 2016), LSTM and a neural
network model made of Gated Recurrent Units (GRUs) (Cho et al.,
2014) are applied to traffic data in California. The study showed that
GRUs behave slightly better than LSTM, while both outperformed an
ARIMA model in terms of Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE).

2.3.3. Non-parametric regression

Another class of non-parametric methods is called Non-Parametric
Regression (NPR). It is suitable for short-term traffic prediction since it
can deal with the uncertainty in traffic flows. The objective of NPR is to
estimate a regression function without relying on an explicit form, unlike
the traditional parametric regression models (where the model parame-
ters are estimated). The forecasting ability of NPR relies on a database of
past observations. It applies a search procedure to find observations in
this database that are similar to the current conditions. Then, it transfers
these observations to the forecast function to estimate the future state of
the system.
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Fig. 1. Record structure of a GPS point.

The k-Nearest Neighbor (k-NN) is a widespread class of non-
parametric regression methods made of two components:

(i) Search procedure: the nearest neighbors (historical data most
similar to the current input) are the inputs to the forecast function
aimed at generating an estimate. The nearest neighbors are found
using a similarity measure, which is usually based on the Min-
kowski distance metric:

n 1/r
L= (Zp,- - qi|’> 6

where n is the vector dimension, p; is the i* element of the historical
record currently considered, g; is the i element of the current input, and
r is a parameter with values between 1 and 2. The most common
implementation uses a sequential procedure to find the nearest neigh-
bors. However, as the number of historical observations increases, the
sequential search becomes very time consuming.

(ii) Forecast function: the most general approach to generate a pre-
diction is to compute an average of the dependent variable values
over the nearest neighbors. However, the neighbors closer to the
current input should probably have more impact on the forecast.

The authors in (Davis and Nihan, 1991) were among the first to use
NPR to estimate short-term traffic flows. Their work highlighted the
importance of a large and representative dataset. NPR was then applied
to estimate traffic volumes from two sites located in Northern Virginia
Capital Beltway, based on five months of observations (Smith, 1995). The
results showed that the proposed method can generate more accurate
predictions than the other tested approaches (including a neural network
model). The work in (Smith and Demetsky, 1997) compares historical
averages, time series, back-propagation neural networks and
non-parametric regression models using a performance index that in-
cludes absolute error, error distribution, ease of model implementation
and model portability. Overall, NPR proved to be better than the other
models and was also easier to implement.

The interested reader is referred to (Ermagun and Levinson, 2018) for
a more exhaustive review on traffic forecasting. The following sections
will now describe the macro-steps outlined in the introduction to produce
travel speed predictions from a huge historical data base. Together, these
macro-steps define a novel methodology, centered on data, that none of
the references above presents in the form that we propose here.

3. Data preparation and representation

Our industrial partner provided us with one year and a half of GPS
data transmitted by mobile devices installed in delivery vehicles
(extending over the years 2013, 2014 and 2015). These GPS points were
first mapped to the underlying Montreal metropolitan community
network to generate daily speed patterns for each individual arc, where a
daily speed pattern for a given arc is made of 96 average speeds taken
over time intervals of 15 min.

In the following, the main issues related to the derivation of speed
patterns from GPS traces are briefly discussed.

3.1. Data cleaning

The record of each GPS point contains an identifier, a latitude-
longitude pair, an instantaneous speed, a mobile identifier, a driver
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arc
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Fig. 2. Database structure after geomatic analysis.

identifier, a date and a time stamp (Fig. 1).

The available data had first to be cleaned by deleting GPS points with
aberrant speeds (values less than 0 km/h or greater than 150 km/h),
aggregates of GPS points associated, for example, with parking stops for
deliveries, etc. Then, a map-matching algorithm was applied to the
remaining GPS points, as described below.

3.2. Map-matching algorithm

Due to the relatively low accuracy of GPS systems, assigning a GPS
point to an arc of the underlying network is a difficult problem, partic-
ularly in dense urban road networks. Thus, a good map-matching algo-
rithm is required. To this end, we used a recent algorithm reported in
(Hashemi and Karimi, 2016) which was slightly adapted to our context.
The algorithm works as follows:

Step 1. Identification of trips. A total of 170 and 327 different vehicle
and driver identifiers were found over all GPS points. Within a single
day, it is possible to find one driver associated with one vehicle, one
driver associated with two vehicles or more, and two drivers or more
associated with one vehicle. Thus, there are clearly different trips
within a day, where a trip corresponds to a vehicle/driver pair.

Step 2. For each trip, all GPS points associated with it are considered

for assignment to arcs of the network. This is done in three main

phases:

2.1 In the initialization phase, candidate arcs are those that are
adjacent to the three nearest nodes of the first GPS point. A score
is calculated for each arc based on a weighted sum of distance and
heading difference with the GPS point. Then, the arc with the best
score is selected and a confidence level is calculated to account
for the uncertainty of that choice (due to inherent uncertainty in
positioning sensors and digital maps). Here, the confidence level
is based on the difference between the score of the selected arc
and the second best score. Clearly, a larger difference implies a
higher confidence level. If the confidence level is above a given
threshold, the GPS point is assigned to the selected arc, otherwise
it is skipped and the next GPS point is considered. Once a GPS
point is assigned to the first arc, the same-arc phase starts.

2.2 In the same-arc phase, the next GPS point is assigned to the same
arc than the previous one, unless some conditions are not satis-
fied anymore (e.g., when crossing an intersection). In the latter
case, the algorithm switches to the next-arc phase.

2.3 In the next-arc phase, candidate arcs are those connected to the
previously selected arc plus those that are adjacent to the three
nearest nodes of the current GPS point. A score is calculated for
each arc based on a weighted sum of three criteria: distance and
heading difference with the current GPS point, plus direction
difference between the arc and the line connecting the previous
GPS point to the current one. Again, the arc with the best score is
selected, its confidence level is calculated, and topological con-
straints are checked (e.g., arc not connected to the previous one,
turn restrictions, etc.). Depending on the confidence level and
satisfaction of the topological constraints, the current GPS point
can either be skipped or assigned to the new arc. In the latter
case, the algorithm returns to the same-arc phase. It should be
noted that considering arcs that are close to the current GPS
point, but not necessarily connected to the previous arc, allows
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Fig. 3. Number of observations per time interval of 15 min.
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Fig. 4. Number of observations per time interval of 1 h.

the algorithm to account for discontinuities in GPS traces due to
obstacles (e.g., tunnels, bridges).

The interested reader is referred to (Hashemi and Karimi, 2016) for
details about this algorithm.

When the assignment of GPS points to arcs is completed for each day,
average travel speeds can be calculated over time slots of 15 min. Thus, a
new database is obtained where each record has the structure shown in
Fig. 2. The next section will now explain how this database was exploited
to fit our purposes.

4. Size reduction and clustering

Due to the size of our database, size reduction techniques were
applied. After eliminating speed patterns and hours with too many

missing data, a “prediction-after-classification” approach was used to
cluster arcs with similar speed patterns into classes before predicting
travel speed values. This is explained in the following.

4.1. Database reduction

With 233,914 arcs and 515 days in the database, we have a total of
233,914 x 515 = 120,506,910 speed patterns. Originally, the database
was constructed with time intervals of 15 min. That is, a speed pattern for
a given arc on a given day is made of 96 average speed values taken over
time intervals of 15 min, thus covering an horizon of 24 h. Furthermore,
the speed limit was stored when no observation was recorded within a
15-min time interval.

An elimination procedure was first applied to get rid of speed patterns
or time intervals with too few data, as described below.
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Fig. 5. Number of arcs in each class generated by AP.

(a) Speed patterns. To keep only average speed values based on real
observations, the time-independent speed limits were removed
from the database. Given that a significant proportion of the
resulting speed patterns now contained missing data, a speed
pattern was automatically discarded when the proportion of real
average speed values over the 96 time intervals was less than 5%
(note that this threshold is often suggested in the literature). In
other words, a speed pattern with only 4 average speeds or less
was eliminated. Through this process, we ended up with a total of
6,667,459 speed patterns. It should be noted that only 3485 arcs
still had at least one representative speed pattern in this database.
The fact that the original GPS traces have been collected from
delivery routes in particular sectors of an urban area explains this
large reduction in the number of arcs and speed patterns. Finally,
the 96 time intervals of 15 min of each remaining speed pattern
were aggregated into 24 1-h time intervals, to allow the calcula-
tion of average speed values based on more observations in each
time interval, see Figs. 3 and 4.

One-hour time intervals. After reducing the number of speed pat-
terns in the database, as well as the number of average speed
values stored in a pattern, we then examined more closely the 1-h
time intervals.

(V)]

Clearly, there are intervals with no or very few observations over the
entire database, like night hours (although some observations can be
found in the database because the vehicles are sometimes moved during
the night from one location to another). Accordingly, we discarded hours
where the proportion of real average speed values over the 6,667,459
speed patterns in the database was under 5%. After this elimination

process, the number of 1-h time intervals was reduced from 24 to 13.
More precisely, only 1-h time intervals starting from 7:00 a.m. to 7:00
p-m. were kept in every speed pattern.

4.2. Clustering

When this step is reached, we have a database of 6,667,459 speed
patterns, where each pattern is associated with a given arc and a given
date. A speed pattern can be seen as a vector of 13 average speed values,
one for each 1-h time interval between 7:00 a.m. and 7:00 p.m. This
number of speed patterns exceeds the capacity of a learning-based pre-
diction algorithm, so we had to group arcs with similar patterns into a
number of classes. For this purpose, an average speed pattern was
calculated for each arc over all its corresponding speed patterns in the
database. Since 3485 arcs are represented in the database, this led to N =
3485 average speed patterns. Then, a hierarchical clustering method was
developed using first the K-means algorithm to get a first classification of
arcs, followed by affinity propagation to get the final classes. This hier-
archical scheme had to be devised because the number of average speed
patterns was too large for a direct application of the affinity propagation
algorithm. This novel clustering approach is described in the following.

4.2.1. K-means

To cluster arcs based on their average speed pattern with the K-means
algorithm, the distance between two patterns was calculated using the
Euclidean metric (see, for example (MacQueen, 1967)). At the end, K
cluster centroids (classes) were obtained and the average speed pattern of
each arc was assigned to the closest centroid. Since the number of classes
must be fixed in advance, the latter was purposely set to a large value,
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Fig. 6. Number of observations in each class generated by AP.

i.e., K = 200. Then, the output of the K-means algorithm was fed to the
affinity propagation algorithm to further reduce the number of classes
(see Section 4.2.2).

The problem solved by the K-means algorithm is summarized below,
where Cy stands for class k. The objective is to minimize the sum of the
squares of the Euclidean distance between speed pattern x; of arc i and its
closest centroid 4y, over all arcs. In this objective, the variables are the

/,lk7S.

K
Min" 3 [~ e’

)
k=1 x;eCy
where:
Co={x: |l % —p |l = min_|lxi—p |} ®
1
K = 1~7 Xi ©
P

An iterative method known as Lloyd’s algorithm was used to
converge to a local minimum, given that solving the problem exactly is

NP-hard. In this algorithm, starting from K randomly located centroids,
the following two steps are performed repeatedly until convergence is
observed: 1) Cluster assignment: construct the set of classes by assigning
each arc to the cluster centroid that is closest to the arc’s speed pattern
and 2) Update centroids: update the centroid of each cluster by averaging
over all speed patterns assigned to it.

4.2.2. Affinity propagation algorithm

The Affinity Propagation (AP) algorithm is a clustering procedure
proposed in (Frey and Dueck, 2007). As opposed to K-means, every data
point is considered as a potential centroid. Through the propagation of
so-called affinity values among pairs of data points, which reflect the
current affinity (or consent) of one data point to consider the other data
point as its centroid, some data points accumulate evidence to be cen-
troids. The reader will find in (Frey and Dueck, 2007) the exact mathe-
matical formulas that are used to guide the transmission of affinity values
and the accumulation of evidence in data points. At the end, evidence is
located only on a certain number of data points that are chosen as cluster
centroids. Then, the set of classes is constructed by assigning each data
point to its closest centroid. It should be noted that the centroids
necessarily correspond to data points and that the number of classes does
not need to be fixed in advance. That is, the number of classes will
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automatically emerge as the algorithm unfolds. The authors in (Frey and
Dueck, 2007) also show that AP approximately minimizes the sum of the
squares of the Euclidean distance between each data point and its
assigned centroid.

AP was applied using the centroids of the 200 classes produced by K-
means as data points. At the end, these 200 classes were aggregated into
21 different classes, labeled from 0 to 20. Figs. 5 and 6 show the number
of arcs and observations, respectively, in each class.

We also tested another clustering algorithm, known as the Mean Shift
Algorithm (Fukunaga and Hostetler, 1975), but since it did not perform
as well as AP for the two evaluation metrics proposed in the next section,
namely the Silhouette coefficient and the Calinski-Harabasz score, we
will omit its description.

4.3. Evaluation metrics

After clustering the arcs into 21 classes, the quality of these classes
was evaluated using two well-known metrics, namely the Silhouette
coefficient and the Calinski-Harabasz score.

The Silhouette coefficient (Rousseeuw, 1987) associates a value be-
tween —1 and 1 with each data point. It can be interpreted as follows: if
the coefficient is close to 1, then the data point is associated with the right
cluster; if it is close to 0, then it lies between two clusters; and if it is close
to —1, then the point is not associated with the right cluster. Assuming
that a data point corresponds to the average speed pattern associated
with an arc, this coefficient is calculated as follows:

e intra-class: for every arc i, calculate the average distance between its
speed pattern and the speed pattern of all other arcs in the same
cluster; we call this value q;.

e inter-class: for every arc i, calculate the average distance between its
speed pattern and the speed patterns of all arcs in the cluster with the
closest centroid; we call this value b;.

o the Silhouette coefficient s; of arc i is then:

b; — a;

- max(a;, b;) (10)

Si
At the end, the Silhouette coefficient is the average of those s; co-
efficients over all arcs.
The Calinski-Harabasz score (Calinski and Harabasz, 1974) is another
measure that provides a ratio between intra-class and inter-classes
dispersion values. The clusters are better defined when the score is
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Fig. 7. Correlation matrix of travel speeds.
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higher. The score is computed as follows:
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In these equations, a vector should be viewed as a column. Also, K is
the number of clusters or classes, N is the number of speed patterns (arcs),
W® is the intra-cluster dispersion matrix, BX) is the inter-cluster
dispersion matrix, Tr(M) is the trace of matrix M, Cy is the k-th class of
speed patterns (arcs) of cardinality ng, ¢ is the centroid of speed pat-
terns in Cy and c is the centroid of all speed patterns.

Note that each entry (i,j) in matrices W& and BX) corresponds
respectively to:

AR NCEEDICETY a4

K
BE!.K) = an (c,(k) — c,-) (c](k) — cj) (15)
k=1

When the Silhouette coefficient was evaluated on the 21 classes
produced by AP, a value of 0.85 was obtained. This is quite good, given
that 1 is the best possible value. It should be noted that the coefficient for
the Mean Shift algorithm was equal to 0.67. Concerning the Calinski-
Harabasz score, a value of 10.52 was obtained by AP, which is to be
compared with 3.39 for the Mean Shift algorithm.

By focusing on the four classes with the largest number of observa-
tions, namely classes 0, 2, 5 and 9, we noted that the average speeds of
classes 0, 2 and 5 are very different, ranging from approximately 25 to 45
km/h. The average speed of class 9 is similar to the one of class 2, but it
does not evolve in the same way over the day. When we looked at more
detailed data, we observed that the arcs of class 9 are not affected by the
congestion observed during weekdays. That is, as opposed to classes 0, 2
and 5, there is no significant difference between the weekday average
speeds and the weekend average speeds. Thus, the clustering algorithm
was successful in identifying classes of arcs with different characteristics.

5. Speed prediction

This section describes the supervised neural network model for pre-
dicting travel speeds based on the classes generated by the AP clustering
algorithm. Since a data missing issue emerges in this context, we will first
explain how this problem is handled. Then, the neural network model
will be described.

5.1. Missing data

Given that input vectors for the neural network model are obtained by
averaging speeds over all arcs in a class produced by our clustering
methodology, there is no missing data in the input (see Section 6.2).
However, each target output vector corresponds to one of the 6,667,459
speed patterns in the database. Thus, it is likely for a target output to have
one or more missing values.

To handle missing values, we must input plausible estimates drawn
from an appropriate model. In this process, the following variables will
be accounted for: day (Monday, Tuesday, ..., Saturday, Sunday), season
(Spring, Summer, Fall, Winter), the arc’s class label, and most



M. Gmira et al.

importantly, the average speed in each time interval which corresponds
to the variables with missing values. Different Multiple Imputation (MI)
methods will be applied (Rubin, 2004). These methods generate multiple
copies of an incomplete database and replace the missing values in each
replicate with estimates drawn from some imputation method. An anal-
ysis is then performed on each complete database and a single MI esti-
mate is calculated for each missing value by combining the estimates
from the multiple complete databases (Little and Rubin, 2014; Rubin,
2004). The methods considered here are: Multivariate Imputation via
Chained Equation (MICE) (Buuren and Groothuis-Oudshoorn, 2011),
missForest (which relies on a Random Forest imputation algorithm
(Stekhoven and Biihlmann, 2011)) and Amelia (Honaker et al., 2011).

5.1.1. MICE
This algorithm can be described as follows:

1. Perform a mean imputation for every missing speed value by setting it
to the average over observed speeds in the same time interval.

2. Select the time interval variable with the largest proportion of missing
speed values.

3. Select the explanatory variables from those with a correlation greater
than 0.5 with the selected time interval variable (see, e.g., the cor-
relation matrix of travel speeds in Fig. 7).

4. Perform linear regression.

5. Replace the missing speed values for the selected time interval with
estimates obtained from the regression model. If this time interval is
subsequently used as an explanatory variable in the regression model
of other time interval variables, both observed and imputed values
are used.

6. Repeat steps 2 to 4 for the remaining time intervals with missing
values.

7. Repeat the entire procedure for a number of iterations to obtain
multiple estimates or imputations for each missing value.

Since each iteration in step 7 produces an estimate or imputation for
each missing value, the number of iterations corresponds to the number
of imputations for each missing value. At the end, these multiple impu-
tations are averaged to obtain a single estimate for each missing value.

5.1.2. Random forest

The Random Forest (RF) algorithm (Breiman, 2001) is a machine
learning technique that does not require the specification of a particular
regression model. It has a built-in routine to handle missing values by
weighting the observed values of a variable using a matrix of proximity
values, where proximity is defined by the proportion of trees in which
pairs of observations share a terminal node. It works as follows:

1. Replace missing values by the average over observed values in the
same time interval.
2. Repeat until a stopping criterion is satisfied:
(a) Using imputed values calculated so far, train a random forest.
(b) Compute the proximity matrix.
(c) Using proximity as a weight, impute missing values as the
weighted average over observed values in the same time interval.

The algorithm stops when the difference between the new imputed
values and the old ones increases for the first time. Note that, by aver-
aging over multiple random trees, this method implicitly behaves ac-
cording to a multiple imputation scheme. The RF algorithm was
implemented using the randomForest R-package (Liaw and Wiener,
2002).

5.1.3. Amelia

Amelia imputes missing data based on different bootstrapped samples
drawn from the database (bootstrapped data samples correspond to
smaller samples of the same size that are repeatedly drawn, with
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replacement, from a single original sample, see (Efron and Tibshirani,
1994)). It basically applies the Expectation Maximization (EM) method
(Dempster et al., 1977) to find the maximum likelihood estimates for the
parameters of a normal distribution. It works as follows:

1. M bootstrap samples are drawn from the data base.

2. An estimation of the mean and variance of the distribution is calcu-
lated for each one of the M samples with EMB (EM with boot-
strapping). Thus, we have M different distributions at the end of this
step.

3. An estimate for each missing value in the database is produced with
each distribution.

Thus, M different imputations are available for each missing value in
the data base at the end. These imputations are then averaged to obtain a
final estimate for each missing value.

The complete databases produced by MICE, RF and Amelia are used
to provide target outputs during the training and testing phases of our
neural network model. The accuracy of the travel speed predictions made
by the neural network will be compared for the three imputation
methods considered.

5.2. LSTM

In this section, we briefly describe the supervised neural network
model used to predict travel speeds, once the missing values in the
database have been replaced by imputed ones (either using MICE, RF or
Amelia). The neural network model is a Long Short-Term Memory
network (LSTM). This choice was motivated by the ability of the LSTM to
handle sequential data and capture time dependencies. First introduced
in (Hochreiter and Schmidhuber, 1997), this special type of Recurrent
Neural Network (RNN) alleviates the vanishing gradient problem (Pas-
canu et al., 2013) (when the gradient of the error function becomes too
small with respect to a given weight, the latter cannot change anymore).
It is made of an input layer, a variable number of hidden layers and an
output layer. Each hidden layer is made of memory cells that store useful
information from past input data. Memory cells in a given hidden layer
send signals at time ¢t to the memory cells in the next hidden layer (or the
units in the output layer, if last) but also to themselves. This recurrent

Table 1

Test instances.
Instance # Arcs # Patterns
DB1 749 1,132,978
DB2 902 1,125,695
DB3 1178 2,737,257
DB4 656 1,671,529




M. Gmira et al.

class day | season |07:00AM| e 07:00PM
label
13 speed values
Fig. 9. Input vector I
class

day season | xx:00

label

N _

~

one speed value

Fig. 10. Input vector II

signal is used by the memory cells to determine their internal state at
time t + 1. Thus, there are connection weight matrices from the input to
the first hidden layer, from each hidden layer to itself and to the next
hidden layer and from the last hidden layer to itself and to the output
layer. Furthermore, memory cells in a given layer have three gates: one
for the signal sent from the previous layer, one for the signal sent by the
memory cells to themselves and one for the signal sent by the memory
cells to the next layer. Gates can be seen as filters that regulate the signals
by allowing some parts of it to be blocked (or forgotten). Like the weight
matrices mentioned above, the gates have weights that are updated
during the learning process. The interested reader will find more details
about the LSTM network model in (Greff et al., 2017).

In the next section, computational results obtained with LSTM and
comparisons with alternative approaches are reported.

6. Computational study

In this section, we first define the four test instances used in the
computational study and describe the input and output vectors of the
LSTM. Then, we present the fine tuning of the LSTM hyperparameters on
each instance before reporting the prediction results. At the end, a study
based on the whole Montreal road network is presented.

Our LSTM was implemented in Python 3.5. The hyperparameter
tuning experiments were performed on a Dell R630 server with two Intel
Xeon E5-2650V4 of 12 cores each (plus hyperthreading) and 256GB of
memory. The server also has 4 NVIDIA Titan XP GPUs with 3,840 CUDA
cores and 12GB of memory. However, our code was limited to only 4
cores and one GPU from the server. To obtain more computational
power, the LSTM results reported on the whole road network of Montreal
were obtained on the Cedar cluster of Compute Canada. We requested 6
cores with Intel E5-2650v4 processors, 32GB of RAM and 1 NVIDIA P100
GPU with 12GB of memory.

6.1. Test instances

To perform the computational study, we used four test instances
associated with different sectors of Montreal, as illustrated in Fig. 8. They
are denoted as DB1, DB2, DB3 and DB4, where DB stands for database.
The size of these instances in terms of number of arcs represented in the
database and number of speed patterns is reported in Table 1.

6.2. Input and output vectors

The input vector for the neural network was first designed as illus-
trated in Fig. 9. Each vector is associated with a class of arcs produced by
AP and is made of: the class label, the day (Monday, Tuesday, ..., Sat-
urday, Sunday), the season (Spring, Summer, Fall, Winter) and 13
average speeds over all arcs in the corresponding class, that is, one speed
value for each 1-h time interval starting from 7:00 a.m. to 7:00 p.m. The
target output vector corresponds to a speed pattern among the 6,667,459
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Table 2

Hyperparameter values.
Hyperparameter Values
Hidden layers 1,2,3,4,5

Units in each hidden layer
Batch size

Training epochs

Learning algorithm

1,5,10,15,20,25,30,35,40,45,50
10,20,30,40,50,80,100
5,10,20,30,40,50

SGD, RMSprop, Adagrad Adadelta
Adam, Adamax, Nadam

softmax, softplus, softsign, relu, tanh
sigmoid, hard sigmoid, linear
uniform, lecun uniform, normal
glorot normal, glorot uniform,

he normal, he uniform

Activation function

Weight initialization

available speed patterns, where the missing values are filled with one of
the three imputation methods of Section 5.1. Obviously, the target output
vector must come from an arc of the same class, and for the same season
and day than the vector provided in input. We should also note that the
speed values in the patterns were normalized using the scikit-learn object
(Pedregosa et al., 2011).

Unfortunately, the results obtained with this approach were unsatis-
factory. To better exploit the capabilities of LSTM to handle sequential
data, we turned to input vector II shown in Fig. 10. Here, input vector I
with 13 speed values is transformed into 13 input vectors II, each with a
single speed value. That is, rather than providing at once the whole speed
pattern for 1-h time intervals starting from 7:00 a.m. to 7:00 p.m., a
sequence of 13 input vectors from 7:00 a.m. to 7:00 p.m. is provided,
where each input vector contains a single speed value. The target output
vector is modified accordingly and also contains a single speed value
taken from an arc of the same class, and for the same season, day and
hour than the vector provided in input.

6.3. Hyperparameter tuning

Each database instance was divided into a training set (80% of the
total) and a testing set (20% of the total), where the latter is made of the
most recent observations. Apart from the connection weights, which are
adjusted through learning, a neural network model also relies on a
number of hyperparameters that must be set before learning takes place.
The following were considered:

Number of hidden layers;

Number of units in each hidden layer;

Batch size: Number of training examples provided to the neural
network before updating the connection weights;

Training epochs: Number of passes through the set of training
examples;

Learning algorithm: Algorithm used during the training phase to
adjust the weights;

e Weight initialization: Method used to set the initial weights, see
(Glorot and Bengio, 2010) for details;

Activation function: Function used to compute the internal state of a
unit from the signals it receives.

A good parameter setting for a neural network has a huge impact on
its results, as discussed in (Bergstra et al., 2011). To determine an
appropriate combination of the above hyperparameters, different search
strategies can be used, in particular grid search and random search
(Snoek et al., 2012). In grid search, a systematic evaluation of all possible
combinations of parameter values is performed. Random search is much
less computationally expensive, given that only a sample of all possible
combinations is considered (100 combinations, in our case). Due to the
curse of dimensionality, the superiority of random search over grid
search is known for high-dimensional parameter spaces (Bergstra and
Bengio, 2012). We applied both methods on our LSTM. The values tested
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Table 3
Hyperparameter tuning.
Hyperparameter DB1 DB2 DB3 DB4
G R G R G R G R
Hidden layers 1 1 1 1 1 1 2 2
Units in each hidden layer 10 10 15 15 10 10 5 5
Batch size 10 10 10 10 10 10 10 10
Training epochs 10 10 10 10 10 10 10 10
Learning algorithm Adam Adam Adam Adam Adam Adamax Adamax Adamax
Activation function sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid
tanh tanh
Weight initialization normal normal normal normal normal normal uniform uniform
Table 4 Table 6
Results with different imputation methods on instance DB3. Comparison of alternative models.
Method # Imput. MAE RMSE Time (min) Test instance Model Metric Input vector I Input vector II
MICE 5 4.00 2.85 91 DB1 LSTM RMSE 4.60 2.99
10 4.00 2.83 178 MAE 6.61 4.11
15 3.99 2.72 480 MLP RMSE 6.26 4.24
20 3.89 2.64 917 MAE 8.84 6.71
RF 5 6.20 4.19 110 SVR RMSE 6.22 3.62
10 6.12 4.02 182 MAE 8.01 6.11
15 5.92 3.63 382 k-NN RMSE 6.93 4.01
20 5.73 3.61 1018 MAE 9.10 7.21
AMELIA 5 7.29 6.38 150 DB2 LSTM RMSE 5.27 4.05
10 7.20 6.03 220 MAE 7.30 5.86
15 6.55 6.05 370 MLP RMSE 6.96 5.00
20 6.02 5.74 500 MAE 7.29 5.16
SVR RMSE 6.58 4.71
MAE 7.27 5.00
k-NN RMSE 7.65 5.86
Table 5 MAE 9.06 7.84
Results on the four instances using MICE with 5 imputations. DB3 LSTM RMSE 4.39 2.85
- - MAE 6.21 4.00
Instance MAE RMSE Time (min) MLP RMSE 6.09 4.05
DB1 411 2.99 76 MAE 8.26 6.32
DB2 5.86 4.05 83 SVR RMSE 6.15 3.49
DB3 4.00 2.85 91 MAE 7.87 6.55
DB4 4.00 2.67 70 k-NN RMSE 7.02 5.95
MAE 7.32 5.11
DB4 LSTM RMSE 3.82 2.67
for each hyperparameter are shown in Table 2. The final settings ob- MAE 6.16 4.00
. . MLP RMSE 6.32 4.26
tained by each search method on each database are shown in Table 3, MAE 794 6.01
where G and R stand for grid search and random search, respectively. SVR RMSE 6.35 3.74
We first note that the best settings produced by grid search and MAE 7.14 4.38
random search are the same, except for the learning algorithm of DB3, k-NN RMSE 7.32 5.17
where we decided to go with Adam. Overall, when comparing the best MAE 8.94 7:61
settings for each instance, we observe some differences but also a number
of similarities. For example, the activation function is always sigmoid,
except for DB4 where two hidden layers have produced the best result, Table 7
with Sigmoid used for the first hidden layer and the hyperbolic tangent Hyperparameter tuning for the Montreal network instance.
tanh for the second one. Also, the best learning algorithm is either Adam -
K i K Hyperparameter Grid Random
or Adamax (a variant of Adam). Adam and Adamax were introduced in
(Kingma and Ba, 2015) and proved to be particularly appropriate for search search
complex neural network structures and large datasets, as detailed in Hidden layers 3 3
(Ruder, 2016). Units in each hidden layer 20 20
Batch size 20 20
Training epochs 10 10
Learning algorithm SGD Adam
6.4. LSTM results Activation function sigmoid sigmoid
tanh tanh
Here, we measure the accuracy of the travel speed predictions pro- tanh tanh
Weight initialization normal normal

duced by our LSTM tuned and trained over each database instance. The
root mean squared error and the mean absolute error are used to measure
the accuracy, where:

(16)

12

17)

1 & N
MAE =2 |y =3
=1

In these equations, L is the number of (input, target output) pairs in
the training or testing set, where the target output corresponds to an
observed speed pattern. In pair [, y; stands for the observed speed pattern
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Table 8
RMSE and MAE metrics with different imputation methods.

Method # Imput. MAE RMSE Running time (min)
MICE 5 13.71 12.91 429
10 12.84 10.84 450
15 12.52 10.32 1117
20 12.39 10.09 1900
RF 5 13.84 13.28 512
10 13.02 11.38 649
15 12.94 11.08 1640
20 12.68 11.03 2000
AMELIA 5 17.91 17.53 550
10 17.63 16.97 580
15 16.76 16.10 940
20 16.49 16.07 1500
15.0
16.0
14.0
12.0
[
£ 10.0
w
8.0 1
6.0
40 4

Epochs

Fig. 11. Evolution of MAE and RMSE during the training phase for
instance DB3.

and y; for the speed pattern produced by the neural network for input
vector l. RMSE and MAE are two error functions typically used to eval-
uate how close the output vectors produced by the neural network are to
the target outputs. Due to the square in the RMSE formula, large errors
have much more impact than small ones. On the other hand, MAE
measures the relative error and is more robust to outliers since there is no
square in its formula.

EURO Journal on Transportation and Logistics 9 (2020) 100006

Table 4 reports the prediction errors of the trained LSTM in the testing
phase for the largest instance DB3, based on the RMSE and MAE metrics,
using the three different imputation methods and a variable number of
imputations (i.e., 5, 10, 15, 20). Note that the authors in (Schafer and
Olsen, 1998) show that 3 to 5 imputations yield good results. But, more
recently, the authors in (Graham et al., 2007; Schafer and Graham, 2002)
proposed 20 imputations. Thus, we chose to vary this number between 5
and 20. The results clearly show that MICE is the best imputation method
(the same is observed for the three other instances). Increasing the
number of imputations from 5 to 20 with MICE produces slightly better
results, but the marginal improvement does not justify the additional
computational cost. Thus, MICE with 5 imputations was chosen. Fig. 11
shows the evolution of the MAE and RSME metrics of LSTM during the
training phase on instance DB3, using MICE with 5 imputations. We can
see that both RMSE and MAE drop sharply at the beginning and then keep
improving, although at a smaller pace, until convergence is observed
after approximately 20 passes (epochs) over the training set. Fig. 12 then
illustrates the differences between the observed speeds and the speeds
predicted by the trained LSTM on instance DB3 using a sample of ob-
servations. The figure shows that, in most cases, the predicted speed
values follow closely the observed ones. The MAE and RMSE errors on
the four instances using MICE with 5 imputations are summarized in
Table 5.

6.5. Comparison with other models

In this section, our LSTM is compared with three alternative ap-
proaches: Support Vector Regression, k-Nearest Neighbor regression and
multi-layer perceptron.

6.5.1. k-Nearest Neighbor regression

As previously mentioned, k-Nearest Neighbor (k-NN) is a non-
parametric method that relies on a similarity measure, based here on
the Euclidean distance, between data points (Friedman et al., 2001).
Assuming a database of (input, target output) data points and a new input
data, the method picks the k closest input data points in the database and
sets the prediction for the new input to the average of the corresponding
output data points.

Parameter k has to be selected carefully. A large k value leads to a
smoother fit and lower variance at the expense of a higher bias, and
conversely for a small k value. We tested the valuesk ={2, 4, 6, 8,12, 16,
20} on each instance and found that an improvement is observed up to k

M1

Y

—— real observations

predictions

0 10 2

0 a0 50

Observations

Fig. 12. Comparison between observed and predicted speed values in the testing phase for instance DB3.
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Table 9
Comparison of alternative models.

Test instance Model Metric Input vector [ Input vector II
DBO LSTM RMSE 17.22 10.84
MAE 22.86 12.84
MLP RMSE 21.92 15.17
MAE 29.57 17.40
SVR RMSE 22.85 17.03
MAE 31.30 14.68
k-NN RMSE 25.00 18.51
MAE 38.13 37.91

= 8, after which the error stabilizes. Thus, the results obtained with k = 8
are reported below.

6.5.2. Support Vector Regression

Given data points (x;, y;),i = 1,...,M, where x; is an input vector and
y; the corresponding output vector, the method known as Support Vector
Regression (SVR) (Scholkopf and Smola, 2001) identifies (in the linear
case) the hyperplane w'x + b, where w and b are the weights and bias,
respectively, that minimizes:

M

I+ =07 0| as)

The first term in the summation involves the norm of the weight
vector while the second term is the total penalty for a tolerance ¢ (i.e., the
penalty is incurred only when the error exceeds ¢€). The constant C is a
parameter that provides a tradeoff between the two terms. In the non
linear case, kernel functions that map the input space to another feature
space are also used in SVR to speed up the calculations. The following
values for €, C and the kernel function were explored through grid search
for a total of 5 x 11 x 10 = 550 combinations.

e Kernel functions: Linear Kernel, Polynomial Kernel, RBF Kernel,
Sigmoid Kernel and Gaussian Kernel.

ee=0,01,02,...091

e C =10, 20, 30, 40, 50, 100, 500, 1000, 1500, 2000

At the end, the best parameter values were the same on each instance
and correspond to a SVR model based on the RBF Kernel with ¢ = 0.1 and
C =1000.

6.5.3. Multi-layer perceptron

The Multi-Layer Perceptron (MLP) is trained with the Levenberg-
Marquardt algorithm (Sutskever, 2013). We tested MLP models with
one to three hidden layers, using a variable number of units in the hidden
layers. Only the results obtained with the best MLP model are reported
below.

6.5.4. Results
The results for LSTM, MLP, SVR and k-NN on the four database in-
stances are reported in Table 6, using again the RMSE and MAE metrics.

Real-time
data
(at instant t)

Historical
data
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Results with the two input structures are also reported to show the su-
periority of input vector II over input vector I, see Section 6.2. With re-
gard to RMSE, LSTM provides a better prediction accuracy than the three
other models on the four test instances. With regard to MAE, LSTM shows
better results on three test instances out of four. It is outperformed by
SVR and MLP on DB2.

6.5.5. Montreal network instance

To test the limits of our methodology, we also addressed the whole
Montreal network with the complete database of 6,667,459 speed pat-
terns. As for DB1, DB2, DB3 and DB4, the database was divided into a
training set (80% of the total) and a testing set (20% of the total), where
the latter is made of the most recent observations. The best hyper-
parameter values obtained in this case with grid search and random
search are shown in Table 7. They are the same for both search types,
except for the learning algorithm. Since Adam (or its variant Adamax)
was previously used, we decided to go with Adam. Note that the acti-
vation function differs depending on the hidden layer considered: the
sigmoid function is used for the first hidden layer while the hyperbolic
tangent tanh is used for the second and third hidden layers.

Table 8 reports the prediction errors of the trained LSTM on the
testing set, based on the RMSE and MAE metrics, using the three different
imputation methods and a variable number of imputations (i.e., 5, 10, 15,
20). Again, MICE turned out to be best method, although RF was quite
competitive. Since most of the improvement occurs between 5 and 10
imputations, MICE with 10 imputations was chosen.

Table 9 compares the trained LSTM with the three alternative pre-
diction methods. After a grid search similar to the one described for DB1,
DB2, DB3 and DB4, a value of k = 12 was chosen for k-NN, while SRV was
again based on the RBF kernel with ¢ = 0.1 and C = 1000. Not surpris-
ingly, LSTM produced the best predictions by a rather wide margin.

7. Real-time system

The work reported in this paper is a first step towards the develop-
ment of a real-time system for the management of delivery routes. Fig. 13
depicts the general framework of such a system. As shown in the figure,
the LSTM neural network model should first be extended to receive real-
time data (sensor data, incident reports, weather reports, ...), in addition
to historical data, to make real-time speed predictions at a given time.
These predictions can then be used to improve the current vehicle routes.

An incremental reoptimization scheme is envisioned where we first
check if the current routes are still feasible with the new travel speeds. If
they are, we just keep the solution as it is, while simply updating the
arrival and departure times at each customer. Otherwise, we look for
better paths to go from one customer to the next in the road network,
based on the new travel speeds. If the solution remains infeasible, then
we go for a true reoptimization. Since a home delivery application is
motivating our work, the reoptimization procedure cannot exchange
customers between routes, but the sequence of customers in each route
can be modified to account for the new travel speeds. It should be noted
that the solution may still be infeasible at the end of the reoptimization
procedure, due to lateness at one or more customers or at the depot, but

Speed
predictions
update

Reoptimization|
of current
vehicle routes

Fig. 13. Real-time delivery system.
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this situation cannot be avoided in a context where the speeds are dy-
namic, unless customers can be canceled.

8. Conclusion

In this work, a methodology for predicting travel speeds exploits a
large database of GPS traces collected from mobile devices installed in-
side delivery vehicles. The methodology features as macro-steps: (1) data
preparation and representation, (2) size reduction and clustering of arcs
into classes, using unsupervised learning, (3) missing data imputation
and (4) speed prediction for the previously identified classes of arcs,
using supervised learning.

In particular, the speed prediction macro-step was addressed with an
LSTM neural network model whose parameters were adjusted with grid
search. The neural network was then tested on four different instances
and compared to three alternative prediction approaches, using two error
metrics, where it turned out to be the best in all cases but one. LSTM was
also the best when considering the whole Montreal road network. A
natural extension of this work would be to include real-time data in the
speed prediction process, with the ultimate goal of integrating the LSTM
neural network model into a real-time system that would adjust the
planned delivery routes according to the current status of the road
network.
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