Naser Ezzati-Jivan, Geneviève Bastien et Michel Dagenais
Communication écrite (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (296kB) |
Abstract
The performance of applications remains a major concern to programmers. An unexpected latency can be caused by a bug or a bad program design, but it can also be caused by external factors such as resource contention or system overload. There exist tools, program profilers, that are used to detect latency. These tools, however, provide a limited view of a system's execution. For example, user space profilers can only detect slow functions but are unable to pinpoint the root causes-whether the problem comes from a slow I/O operation, interrupt, lock contention, or other problems. Kernel tracers, on the other hand, are able to collect detailed information about the operating system execution at various levels from hardware counters to system calls, disks, network I/O, etc, from which the main performance problems can be detected. In this paper, we combine user space and kernel space tracing data to understand and diagnose system performance problems and to guide users to identify the root causes. Our approach works by making a single data model by synchronizing and correlating the data gathered from different layers. We show the effectiveness of our approach by applying it to understand the latency of PHP web applications in handling web requests.
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2715 Optimisation |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CRSNG/NSERC |
URL de PolyPublie: | https://publications.polymtl.ca/4203/ |
Nom de la conférence: | Annual IEEE International Systems Conference (SysCon 2018) |
Lieu de la conférence: | Vancouver, Canada |
Date(s) de la conférence: | 2018-04-23 - 2018-04-26 |
Maison d'édition: | IEEE |
DOI: | 10.1109/syscon.2018.8369613 |
URL officielle: | https://doi.org/10.1109/syscon.2018.8369613 |
Date du dépôt: | 17 févr. 2020 12:49 |
Dernière modification: | 26 sept. 2024 03:51 |
Citer en APA 7: | Ezzati-Jivan, N., Bastien, G., & Dagenais, M. (avril 2018). High latency cause detection using multilevel dynamic analysis [Communication écrite]. Annual IEEE International Systems Conference (SysCon 2018), Vancouver, Canada (8 pages). https://doi.org/10.1109/syscon.2018.8369613 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions