<  Back to the Polytechnique Montréal portal

Green Function and Electromagnetic Potential for Computer Vision and Convolutional Neural Network Applications

Dominique Beaini

PhD thesis (2019)

[img] Restricted to: Repository staff only until 11 October 2020.
Cite this document: Beaini, D. (2019). Green Function and Electromagnetic Potential for Computer Vision and Convolutional Neural Network Applications (PhD thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/3982/
Show abstract Hide abstract

Abstract

RÉSUMÉ Pour les problèmes de vision machine (CV) avancées, tels que la classification, la segmentation de scènes et la détection d’objets salients, il est nécessaire d’extraire le plus de caractéristiques possibles des images. Un des outils les plus utilisés pour l’extraction de caractéristiques est l’utilisation d’un noyau de convolution, où chacun des noyaux est spécialisé pour l’extraction d’une caractéristique donnée. Ceci a mené au développement récent des réseaux de neurones convolutionnels (CNN) qui permet d’optimiser des milliers de noyaux à la fois, faisant du CNN la norme pour l’analyse d’images. Toutefois, une limitation importante du CNN est que les noyaux sont petits (généralement de taille 3x3 à 7x7), ce qui limite l’interaction longue-distance des caractéristiques. Une autre limitation est que la fusion des caractéristiques se fait par des additions pondérées et des opérations de mise en commun (moyennes et maximums locaux). En effet, ces opérations ne permettent pas de fusionner des caractéristiques du domaine spatial avec des caractéristiques puisque ces caractéristiques occupent des positions éloignées sur l’image. L’objectif de cette thèse est de développer des nouveaux noyaux de convolutions basés sur l’électromagnétisme (EM) et les fonctions de Green (GF) pour être utilisés dans des applications de vision machine (CV) et dans des réseaux de neurones convolutionnels (CNN). Ces nouveaux noyaux sont au moins aussi grands que l’image. Ils évitent donc plusieurs des limitations des CNN standards puisqu’ils permettent l’interaction longue-distance entre les pixels de limages. De plus, ils permettent de fusionner les caractéristiques du domaine spatial avec les caractéristiques du domaine du gradient. Aussi, étant donné tout champ vectoriel, les nouveaux noyaux permettent de trouver le champ vectoriel conservatif le plus rapproché du champ initial, ce qui signifie que le nouveau champ devient lisse, irrotationnel et conservatif (intégrable par intégrale curviligne). Pour répondre à cet objectif, nous avons d’abord développé des noyaux convolutionnels symétriques et asymétriques basés sur les propriétés des EM et des GF et résultant en des noyaux qui sont invariants en résolution et en rotation. Ensuite, nous avons développé la première méthode qui permet de déterminer la probabilité d’inclusion dans des contours partiels, permettant donc d’extrapoler des contours fins en des régions continues couvrant l’espace 2D. De plus, la présente thèse démontre que les noyaux basés sur les GF sont les solveurs optimaux du gradient et du Laplacien.----------ABSTRACT For advanced computer vision (CV) tasks such as classification, scene segmentation, and salient object detection, extracting features from images is mandatory. One of the most used tools for feature extraction is the convolutional kernel, with each kernel being specialized for specific feature detection. In recent years, the convolutional neural network (CNN) became the standard method of feature detection since it allowed to optimize thousands of kernels at the same time. However, a limitation of the CNN is that all the kernels are small (usually between 3x3 and 7x7), which limits the receptive field. Another limitation is that feature merging is done via weighted additions and pooling, which cannot be used to merge spatial-domain features with gradient-domain features since they are not located at the same pixel coordinate. The objective of this thesis is to develop electromagnetic (EM) convolutions and Green’s functions (GF) convolutions to be used in Computer Vision and convolutional neural networks (CNN). These new kernels do not have the limitations of the standard CNN kernels since they allow an unlimited receptive field and interaction between any pixel in the image by using kernels bigger than the image. They allow merging spatial domain features with gradient domain features by integrating any vector field. Additionally, they can transform any vector field of features into its least-error conservative field, meaning that the field of features becomes smooth, irrotational and conservative (line-integrable). At first, we developed different symmetrical and asymmetrical convolutional kernel based on EM and GF that are both resolution and rotation invariant. Then we developed the first method of determining the probability of being inside partial edges, which allow extrapolating thin edge features into the full 2D space. Furthermore, the current thesis proves that GF kernels are the least-error gradient and Laplacian solvers, and they are empirically demonstrated to be faster than the fastest competing method and easier to implement. Consequently, using the fast gradient solver, we developed the first method that directly combines edges with saliency maps in the gradient domain, then solves the gradient to go back to the saliency domain. The improvement of the saliency maps over the F-measure is on average 6.6 times better than the nearest competing algorithm on a selected dataset. Then, to improve the saliency maps further, we developed the DSS-GIS model which combines edges with salient regions deep inside the network.

Open Access document in PolyPublie
Department: Département de génie mécanique
Dissertation/thesis director: Sofiane Achiche and Maxime Raison
Date Deposited: 11 Oct 2019 09:30
Last Modified: 11 Oct 2019 09:30
PolyPublie URL: https://publications.polymtl.ca/3982/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only