<  Back to the Polytechnique Montréal portal

Ice Interface Evolution Modelling Algorithms for Aircraft Icing

Simon Bourgault-Côté

PhD thesis (2019)

[img] Restricted to: Repository staff only until 12 June 2020.
Cite this document: Bourgault-Côté, S. (2019). Ice Interface Evolution Modelling Algorithms for Aircraft Icing (PhD thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/3805/
Show abstract Hide abstract

Abstract

RÉSUMÉ Le givrage des aéronefs est un phénomène qui nuit à la sécurité des vols depuis le début de l’aviation et qui n’est toujours pas bien compris. Ainsi, des réglementations ont été définies pour identifier les conditions de givrage contre lesquelles les avions doivent être protégés, mais les conditions les plus critiques n’ont été ajoutées que récemment dans la réglementation après des accidents majeurs. Ces conditions critiques incluent l’accumulation de verglas sur les ailes en flèche et l’agglomération de cristaux de glace, ce qui est particulièrement problématique pour les moteurs. Ces domaines font l’objet de recherches expérimentales, mais le développement de modèles et d’outils appropriés pour simuler ces conditions numériquement est également important. Ces simulations comprennent plusieurs modules exécutés de façon séquentielle pour modéliser l’écoulement aérodynamique, les phases dispersées (gouttelettes et cristaux), les échanges thermodynamiques de surface et l’évolution de la géométrie. Ce dernier point est moins étudié dans la littérature que les autres et dépend i) d’une représentation géométrique et ii) d’une méthode permettant de faire évoluer le front de glace. L’objectif principal de ce travail est de fournir un ensemble approprié de méthodes pour simuler l’accrétion de glace avec un logiciel multicouche automatisé. Dans ce contexte, le module d’évolution de la géométrie est identifié comme étant la partie faible devant être améliorée. Les développements sont réalisés en deux dimensions dans le logiciel maison NSCODE-ICE, mais les méthodes étudiées sont considérées pour une future extension en trois dimensions. De ce fait, la robustesse des méthodes est de la plus haute importance, en particulier lors de la phase de transition entre deux couches de glace. La méthode d’évolution de la géométrie développée devrait être capable de gérer la fusion des fronts de glace tout en conservant la masse de glace. L’accumulation de glace étant par nature chaotique, il serait également intéressant d’étudier l’impact d’un modèle stochastique sur les résultats. Premièrement, les différents composants d’un logiciel d’accrétion de glace sont détaillés pour établir la base du logiciel de givrage multicouche utilisé dans cette étude. L’écoulement aérodynamique est simulé avec un solveur RANS structuré et les trajectoires des gouttelettes sont modélisées avec une formulation eulérienne sur la même grille. Les échanges thermodynamiques en surface et les eaux de ruissellement sont modélisées avec un modèle de Messinger itératif. Une évolution algébrique standard de la géométrie fait partie de NSCODE-ICE et est utilisée comme point de comparaison pour les autres méthodes de cette étude.----------ABSTRACT Aircraft icing is a phenomenon that has hindered flight safety since the beginning of aviation and that is still not well understood. Thus, regulations have been set to identify icing conditions that the aircraft must be protected against, but the most critical conditions were only added recently in the regulations after major accidents happened. These critical conditions include scallops ice accretion on swept wings and ice crystal agglomerations, which is particularly problematic for engines. These fields are being researched experimentally, but developing appropriate models and tools to simulate these conditions numerically is also of importance. Such simulations include multiple modules run sequentially to model the aerodynamic flow, the dispersed phases (droplets and crystals), the surface thermodynamic exchanges and the geometry evolution. This last point is less studied in the literature than the others and depends on i) a geometry representation and ii) a method to evolve the ice front. The main objective of this work is to provide an appropriate set of methods to simulate ice accretion with an automated multi-layer software. In this context, the geometry evolution module is identified as the weak part which needs to be improved. The developments are done in two dimensions within the in-house ice accretion tool NSCODE-ICE, but the methods studied are considered for a future three-dimensional extension. As such, the robustness of the methods is of utmost importance, in particular within the transition phase between two ice layers. The developed geometry evolution method should be able to handle merging ice fronts while still conserving the ice mass. Ice accretion being chaotic by nature, to study the impact of a stochastic model on the results would also be of interest. First, the different components of an ice accretion software are detailed to establish the basis of the multi-layer icing software used in this study. The aerodynamic flow is simulated with a structured RANS solver and the droplets trajectories are modelled with an Eulerian formulation on the same grid. The thermodynamic exchanges on the surface and the runback water are modelled with an iterative Messinger model. A standard algebraic geometry evolution is part of NSCODE-ICE and is used as a comparative point for the other methods in this study.

Open Access document in PolyPublie
Department: Département de génie mécanique
Dissertation/thesis director: Éric Laurendeau
Date Deposited: 12 Jun 2019 11:41
Last Modified: 04 Jul 2019 16:04
PolyPublie URL: https://publications.polymtl.ca/3805/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only