<  Back to the Polytechnique Montréal portal

Identifying conditions for inducible protein production in E. coli: combining a fed-batch and multiple induction approach

Marc G. Aucoin, Virginie McMurray-Beaulieu, Frédéric Poulin, Eric B. Boivin, Jingkui Chen, Francisc M. Ardelean, Mathieu Cloutier, Young J. Choi, Carlos B. Miguez and Mario Jolicoeur

Article (2006)

Published Version
Terms of Use: Creative Commons Attribution .
Download (718kB)
Cite this document: Aucoin, M. G., McMurray-Beaulieu, V., Poulin, F., Boivin, E. B., Chen, J., Ardelean, F. M., ... Jolicoeur, M. (2006). Identifying conditions for inducible protein production in E. coli: combining a fed-batch and multiple induction approach. Microbial Cell Factories, 5. doi:10.1186/1475-2859-5-27
Show abstract Hide abstract


Background: In the interest of generating large amounts of recombinant protein, inducible systems have been studied to maximize both the growth of the culture and the production of foreign proteins. Even though thermo-inducible systems were developed in the late 1970's, the number of studies that focus on strategies for the implementation at bioreactor scale is limited. In this work, the bacteriophage lambda P-L promoter is once again investigated as an inducible element but for the production of green fluorescent protein (GFP). Culture temperature, induction point, induction duration and number of inductions were considered as factors to maximize GFP production in a 20-L bioreactor.Results: It was found that cultures carried out at 37 degrees C resulted in a growth-associated production of GFP without the need of an induction at 42 degrees C. Specific production was similar to what was achieved when separating the growth and production phases. Shake flask cultures were used to screen for desirable operating conditions. It was found that multiple inductions increased the production of GFP. Induction decreased the growth rate and substrate yield coefficients; therefore, two time domains (before and after induction) having different kinetic parameters were created to fit a model to the data collected.Conclusion: Based on two batch runs and the simulation of culture dynamics, a pre-defined feeding and induction strategy was developed to increase the volumetric yield of a temperature regulated expression system and was successfully implemented in a 20-L bioreactor. An overall cell density of 5.95 g DW l(-1) was achieved without detriment to the cell specific production of GFP; however, the production of GFP was underestimated in the simulations due to a significant contribution of non-growth associated product formation under limiting nutrient conditions.

Uncontrolled Keywords

Applied Microbiology; Biotechnology; Microbiology

Open Access document in PolyPublie
Subjects: 1800 Génie chimique > 1800 Génie chimique
5200 Microbiologie > 5200 Microbiologie
Department: Département de génie chimique
Research Center: Autre
Funders: CRSNG/NSERC, Fonds québécois de la recherche sur la nature et les technologies
Date Deposited: 11 Jan 2019 16:34
Last Modified: 12 Jan 2019 01:20
PolyPublie URL: https://publications.polymtl.ca/3386/
Document issued by the official publisher
Journal Title: Microbial Cell Factories (vol. 5)
Publisher: BioMed Central
Official URL: https://doi.org/10.1186/1475-2859-5-27


Total downloads

Downloads per month in the last year

Origin of downloads


Repository Staff Only