<  Back to the Polytechnique Montréal portal

Forage de données pour la détection d'un état de blocage de l'apprenant dans le cadre du système tutoriel intelligent QED-Tutrix

Jean-Philippe Corbeil

Masters thesis (2018)

[img]
Preview
Download (1MB)
Cite this document: Corbeil, J.-P. (2018). Forage de données pour la détection d'un état de blocage de l'apprenant dans le cadre du système tutoriel intelligent QED-Tutrix (Masters thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/3279/
Show abstract Hide abstract

Abstract

L’état de blocage est le moment où un apprenant, en pleine résolution de problème sur un système tutoriel intelligent, a besoin d’une intervention tutorielle pour poursuivre sa résolution. Dans ce mémoire, des modèles probabilistes seront développés pour détecter les états de blocage d’un apprenant qui résout un problème sur le système tutoriel intelligent en mathématiques QED-Tutrix. La méthodologie inclut deux expérimentations avec une version modifiée de QED-Tutrix pour recueillir des séquences d’actions associées à un état de blocage ou de non-blocage. Dans ces ensembles de données, des états de blocage ont été observés à partir des fréquences d’actions et des distributions de sous-séquences. Quatre modèles probabilistes ont été développés en tout : le modèle de processus de fréquence d’actions, le modèle bayésien en sous-séquences d’actions, le modèle du réseau de neurones convolutif et le modèle hybride. Ce dernier surpasse les autres avec un score F1 de 80,4 % pour la classification des états de blocage sur l’ensemble d’entraînement et 77,3 % sur l’ensemble test. L’application de cette recherche mène directement à l’amélioration de la machine à états de QED-Tutrix dans son interaction avec l’apprenant. Elle aboutit aussi sur une deuxième phase de travaux de recherche durant laquelle le développement d’interventions tutorielles ciblées est approché. Puisqu’il est possible d’identifier les moments de blocage de l’apprenant avec une bonne précision, il faut à présent concevoir des algorithmes pouvant comprendre le contexte du blocage et pouvant intervenir en conséquence. En ce qui concerne l’amélioration des performances des modèles, l’incorporation de l’historique des blocages dans les modèles probabilistes est à considérer en plus d’une considération du contexte mathématique.----------ABSTRACT: A blocking state is a cognitive state in which a student cannot make any progress toward finding a solution to a problem. In this research, we present the development of probabilistic models to detect a blocking state while solving a Canadian high school-level problem in Euclidean geometry on an intelligent tutoring system. Our methodology includes an experimentation with a modified version of QED-Tutrix, an intelligent tutoring system, which was used to gather labelled datasets composed of sequences of mouse and keyboard actions. We observed blocking states in this dataset from subsequence distributions and frequency of states. Using a probabilistic framework, we developed four predicting models: an actionfrequency model, a subsequence-detection model, a 1D convolutional neural network model and an hybrid model. The hybrid model outperforms the others with a F1 score of 80.4 % on classification of blocking state on training set. It performs 77.3 % on test set. The applications of this research lead to an upgrade of QED-Tutrix internal finite-state machine for its interactions with the learner. Also, this research opens a second research stage, in which targeted tutorial interventions in QED-Tutrix can be developed. This can be achieved with an algorithm that understands the context of intervention and that is able to help precisely the learner. In order to get better performances from the current models, the history of the previous blocking states needs to be incorporated. Moreover, the mathematical concepts used by the learner can be integrated.

Open Access document in PolyPublie
Department: Département de génie informatique et génie logiciel
Dissertation/thesis director: Michel Gagnon and Philippe R. Richard
Date Deposited: 17 Oct 2018 15:18
Last Modified: 24 Oct 2018 16:13
PolyPublie URL: https://publications.polymtl.ca/3279/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only