Naser Ezzati-Jivan et Michel Dagenais
Article de revue (2013)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (322kB) |
Abstract
In this paper, we present a framework to compute, store and retrieve statistics of various system metrics from large traces in an efficient way. The proposed framework allows for rapid interactive queries about system metrics values for any given time interval. In the proposed framework, efficient data structures and algorithms are designed to achieve a reasonable query time while utilizing less disk space. A parameter termed granularity degree (GD) is defined to determine the threshold of how often it is required to store the precomputed statistics on disk. The solution supports the hierarchy of system resources and also different granularities of time ranges. We explain the architecture of the framework and show how it can be used to efficiently compute and extract the CPU usage and other system metrics. The importance of the framework and its different applications are shown and evaluated in this paper.
Sujet(s): |
2700 Technologie de l'information > 2700 Technologie de l'information 2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2715 Optimisation |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CRSNG/NSERC |
Numéro de subvention: | CRDPJ424666-11 |
URL de PolyPublie: | https://publications.polymtl.ca/2954/ |
Titre de la revue: | ACM SIGOPS Operating Systems Review (vol. 47, no 1) |
Maison d'édition: | ACM |
DOI: | 10.1145/2433140.2433151 |
URL officielle: | https://doi.org/10.1145/2433140.2433151 |
Date du dépôt: | 29 janv. 2018 15:36 |
Dernière modification: | 28 sept. 2024 07:02 |
Citer en APA 7: | Ezzati-Jivan, N., & Dagenais, M. (2013). A framework to compute statistics of system parameters from very large trace files. ACM SIGOPS Operating Systems Review, 47(1), 43-54. https://doi.org/10.1145/2433140.2433151 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions