<  Back to the Polytechnique Montréal portal

Wall Distance Evaluation Via Eikonal Solver for RANS Applications

Anthony Bouchard

Masters thesis (2017)

[img]
Preview
Download (22MB)
Cite this document: Bouchard, A. (2017). Wall Distance Evaluation Via Eikonal Solver for RANS Applications (Masters thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/2825/
Show abstract Hide abstract

Abstract

RÉSUMÉ Les logiciels de mécanique des fluides assistée par ordinateur (CFD) sont de plus en plus utilisés pour la conception d’aéronefs. L’utilisation de grappes informatiques haute performance permet d’augmenter la puissance de calcul, aux prix de modifier la structure du code. Dans les codes CFD, les équations de Navier-Stokes moyennées (plus connues sous le nom des équations RANS) sont souvent résolues. Par conséquent, les modèles de turbulence sont utilisés pour approximer les effets de la turbulence. Dans l’industrie aéronautique, le modèle Spalart-Allmaras est bien accepté. La distance à la paroi dans ce modèle, par exemple, joue un rôle clé dans l’évaluation des forces aérodynamiques. L’évaluation de ce paramètre géométrique doit alors être précis et son calcul efficace. Avec les nouveaux développement des hardwares, un besoin se crée dans la communauté afin d’adapter les codes CFD à ceux-ci. Les algorithmes de recherche comme les distances euclidienne et projetée sont des méthodes souvent utilisées pour le calcul de la distance à la paroi et ont tendance à présenter une mauvaise scalabilité. Pour cette raison, un nouveau solveur pour la distance à la paroi doit être développé. Pour utiliser les solveurs et techniques d’accélération déjà existantes au sein du code CFD, l’équation Eikonal, une équation aux différentielles partielles non-linéaires, a été choisie. Dans la première partie du projet, le solveur d’équation Eikonal est développé en 2D et est résolue dans sa forme advective au centre de cellule. Les méthodes des différences finies et des volumes finis sont testées. L’équation est résolue à l’aide d’une discrétisation spatiale de premier ordre en amont. Les solveurs ont été vérifiés sur des cas canoniques, tels une plaque plane et un cylindre. Les deux méthodes de discrétisation réussissent à corriger les effets de maillages obliques et courbes. La méthode des différences finies possède un taux de convergence en maillage de deuxième ordre tandis que la méthode des volumes finis a un taux de convergence de premier ordre. L’addition d’une reconstruction linéaire de la solution à la face permet d’étendre la méthode des volumes finis à une méthode de deuxième ordre. De plus, les méthodes de différence finie et de volume fini de deuxième ordre permettent de bien représenter la distance à la paroi dans les zones de fort élargissement des cellules. L’équation Eikonal est ensuite vérifié sur plusieurs cas dont un profil NACA0012 en utilisant trois modèles de turbulence : Spalart-Allmaras, Menter SST et Mener-Langtry SST transitionnel.----------ABSTRACT Computational fluid dynamics (CFD) software is being used more often nowadays in aircraft design. The use of high performance computing clusters can increase computing power, but requires change in the structure of the software. In the aeronautical industry, CFD codes are often used to solve the Reynolds-Averaged Navier-Stokes (RANS) equations, and turbulence models are frequently used to approximate turbulent effects on flow. The Spalart-Allmaras turbulence model is widely accepted in the industry. In this model, wall distance plays a key role in the evaluation of aerodynamic forces. Therefore calculation of this geometric parameter needs to be accurate and efficient. With new developments in computing hardware, there is a need to adapt CFD codes. Search algorithms such as Euclidean and projected distance are often the methods used for computation of wall distance but tend to exhibit poor scalability. For this reason, a new wall distance solver is developed here using the Eikonal equation, a non-linear partial differential equation, chosen to make use of existing solvers and acceleration techniques in RANS solvers. In the first part of the project, the Eikonal equation solver was developed in 2D and solved in its advective form at the cell center. Both finite difference and finite volume methods were tested. The Eikonal equation was also solved using a first-order upwind spatial discretization. The solvers were verified through canonical cases like a flat plate and a cylinder. Both methods were able to correct the effects of skewed and curved meshes. The finite difference method converged at a second-order rate in space while the finite volume method converged at a first-order rate. The addition of a linear reconstruction of the solution at the face extended the finite volume method to a second-order method. Moreover, both finite difference and second-order finite volume methods were well represented by wall distance in zones of strong cell growth. The finite difference method was chosen, as it required less computing time. The Eikonal equation was then verified for several cases including a NACA0012 using three turbulence models: Spalart-Allmaras, Menter’s SST and Menter-Langtry transitional SST. For the first model, the Eikonal equation was able to correct grid skewness on the turbulent viscosity as well as on the aerodynamic coefficients, while for the other two yielded results similar to Euclidean and projected distance. To verify the implementation and convergence of the multi-grid scheme, the new wall distance solver was tested on an ice-accreted airfoil. In addition, the overset grid capabilities of the wall distance solver were verified on the McDonnell Douglas airfoil. Finally, the DLR-F6, a 3D case, was solved to show that the Eikonal equation can be extended to 3D meshes.

Open Access document in PolyPublie
Department: Département de génie mécanique
Dissertation/thesis director: Éric Laurendeau
Date Deposited: 23 Feb 2018 10:56
Last Modified: 27 Jun 2019 16:47
PolyPublie URL: https://publications.polymtl.ca/2825/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only