<  Retour au portail Polytechnique Montréal

Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes

Yahia Alghorani

Thèse de doctorat (2015)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Tous droits réservés
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Résumé

Le but des systèmes de communication intervéhicule (Inter-Vehicle Communication – IVC) est d'améliorer la sécurité de conduite en utilisant des capteurs et des techniques de communication sans fil pour être en mesure de communiquer mutuellement sans aucune intervention extérieure. Avec l'utilisation de ces systèmes, les communications véhicule à véhicule (V2V) peuvent être plus efficaces dans la prévention des accidents et la décongestion de la circulation que si chaque véhicule travaillait individuellement. Une des solutions proposées pour les systèmes IVC est l'utilisation des systèmes de communication coopérative, qui en principe, augmentent l'efficacité spectrale et énergétique, la couverture du réseau, et réduit la probabilité de défaillance. La diversité d'antenne (entrées multiples sorties multiples « Multiple-Input Multiple-Output » ou MIMO) peut également être une alternative pour les systèmes IVC pour améliorer la capacité du canal et la diversité (fiabilité), mais en échange d'une complexité accrue. Toutefois, l'application de telles solutions est difficile, car les communications sans fil entre les véhicules sont soumises à d'importants effets d'évanouissements des canaux appelés (canaux sujets aux évanouissements de n*Rayleigh, « n*Rayleigh fading channels»), ce qui conduit à la dégradation des performances. Par conséquent, dans cette thèse, nous proposons une analyse de la performance globale des systèmes de transmission coopératifs et MIMO sur des canaux sujets aux évanouissements de n*Rayleigh. Cette analyse permettra d'aider les chercheurs pour la conception et la mise en œuvre de systèmes de communication V2V avec une complexité moindre. En particulier, nous étudions d'abord la performance de la sélection du relais de coopération avec les systèmes IVC, on suppose que la transmission via « Amplify-and-Forward» (AF) ou bien «Decode-and-Forward» (DF) est assurée par N relais pour transférer le message de la source à la destination. La performance du système est analysée en termes de probabilité de défaillance, la probabilité d'erreur de symbole, et la capacité moyenne du canal. Les résultats numériques démontrent que la sélection de relais réalise une diversité de l'ordre de (d≈mN/n) pour les deux types de relais, où m est un paramètre évanouissement de Rayleigh en cascade. Nous étudions ensuite la performance des systèmes IVC à sauts multiples avec et sans relais régénératifs. Dans cette étude, nous dérivons des expressions approximatives pour la probabilité de défaillance et le niveau d'évanouissement lorsque la diversité en réception basée sur le ratio maximum de combinaison (MRC) est employée. En outre, nous analysons la répartition de puissance pour le système sous-jacent afin de minimiser la probabilité globale de défaillance. Nous montrons que la performance des systèmes régénératifs est meilleure que celle des systèmes non régénératifs lorsque l'ordre de cascade n est faible, tandis qu'ils ont des performances similaires lorsque n est élevé. Ensuite, nous considérons le problème de la détection de puissance des signaux inconnus aux n* canaux de Rayleigh. Dans ce travail, de nouvelles expressions approximatives sont dérivées de la probabilité de détection moyenne avec et sans diversité en réception MRC. En outre, la performance du système est analysée lorsque la détection de spectre coopérative (CSS) est considérée sous diverses contraintes de canaux (par exemple, les canaux de communication parfaits et imparfaits). Les résultats numériques ont montré que la fiabilité de détection diminue à mesure que l'ordre n augmente et s'améliore sensiblement lorsque CSS emploie le schéma MRC. Il est démontré que CSS avec le schéma MRC maintient la probabilité de fausse alarme minimale dans les canaux d'information imparfaite plutôt que d'augmenter le nombre d'utilisateurs en coopération. Enfin, nous présentons une nouvelle approche pour l'analyse des performances des systèmes IVC sur n*canaux de Rayleigh, en utilisant n_T antennes d'émission et n_R antennes de réception pour lutter contre l'effet d'évanouissement. Dans ce contexte, nous évaluons la performance des systèmes MIMO-V2V basés sur la sélection des antennes d'émission avec un ratio maximum de combinaison (TAS/MRC) et la sélection combinant (TAS/SC). Dans cette étude, nous dérivons des expressions analytiques plus précises pour la probabilité de défaillance, la probabilité d'erreur de symbole, et l'évanouissement sur n*canaux Rayleigh. Il est montré que les deux régimes ont le même ordre de diversité maximale équivalent à (d≈mn_T n_R /n) . En outre, TAS / MRC offre un gain de performance mieux que TAS/ SC lorsque le nombre d'antennes de réception est plus que celle des antennes d'émission, mais l'amélioration de la performance est limitée lorsque n augmente.

Abstract

The purpose of intervehicular communication (IVC) systems is to enhance driving safety, in which vehicles use sensors and wireless communication techniques to talk to each other without any roadside intervention. Using these systems, vehicle-to-vehicle (V2V) communications can be more effective in avoiding accidents and traffic congestion than if each vehicle works individually. A potential solution can be implemented in this research area using cooperative communications systems which, in principle, increase spectral and power efficiency, network coverage, and reduce the outage probability. Antenna diversity (i.e., multiple-input multiple output (MIMO) systems) can also be an alternative solution for IVC systems to enhance channel capacity and diversity (reliability) but in exchange of an increased complexity. However, applying such solutions is challenging since wireless communications among vehicles is subject to harsh fading channels called ‘n*Rayleigh fading channels', which leads to performance degradation. Therefore, in this thesis we provide a comprehensive performance analysis of cooperative transmission and MIMO systems over n*Rayleigh fading channels that help researchers for the design and implementation of V2V communication systems with lower complexity. Specifically, we first investigate the performance of cooperative IVC systems with relay selection over n*Rayleigh fading channels, assuming that both the decode-and-forward and the amplify-and-forward relaying protocols are achieved by N relays to transfer the source message to the destination. System performance is analyzed in terms of outage probability, symbol error probability, and average channel capacity. The numerical results have shown that the best relay selection approach achieves the diversity order of (d≈mN/n) where m is a cascaded Rayleigh fading parameter. Second, we investigate the performance of multihop-IVC systems with regenerative and non-regenerative relays. In this study, we derive approximate closed-form expressions for the outage probability and amount of fading when the maximum ratio combining (MRC) diversity reception is employed. Further, we analyze the power allocation for the underlying scheme in order to minimize the overall outage probability. We show that the performance of regenerative systems is better than that of non-regenerative systems when the cascading order n is low and they have similar performance when n is high. Third, we consider the problem of energy detection of unknown signals over n*Rayleigh fading channels. In this work, novel approximate expressions are derived for the average probability of detection with and without MRC diversity reception. Moreover, the system performance is analyzed when cooperative spectrum sensing (CSS) is considered under various channel constraints (e.g, perfect and imperfect reporting channels). The numerical results show that the detection reliability decreases as the cascading order n increases and substantially improves when CSS employs MRC schemes. It is demonstrated that CSS with MRC scheme keeps the probability of false alarm minimal under imperfect reporting channels rather than increasing the number of cooperative users. Finally, we present a new approach for the performance analysis of IVC systems over n*Rayleigh fading channels, using n_T transmit and n_R receive antennas to combat fading influence. In this context, we evaluate the performance of MIMO-V2V systems based on the transmit antenna selection with maximum ratio combining (TAS/MRC) and selection combining (TAS/SC) schemes. In this study, we derive tight analytical expressions for the outage probability, the symbol error probability, and the amount of fading over n*Rayleigh fading channels. It is shown that both schemes have the same maximum diversity order equivalent to (d≈mn_T n_R /n). In addition, TAS/MRC offers a better performance gain than TAS/SC scheme when the number of receive antennas is more than that of transmit antennas, but the performance improvement is limited as n increases.

Département: Département de génie informatique et génie logiciel
Programme: Génie informatique
Directeurs ou directrices: Samuel Pierre
URL de PolyPublie: https://publications.polymtl.ca/1914/
Université/École: École Polytechnique de Montréal
Date du dépôt: 16 déc. 2015 13:55
Dernière modification: 08 avr. 2024 08:53
Citer en APA 7: Alghorani, Y. (2015). Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes [Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/1914/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document