<  Back to the Polytechnique Montréal portal

Segmentation automatique de la moelle épinière sur des images de résonance magnétique par propagation de modèles déformables

Benjamin De Leener

Masters thesis (2014)

[img]
Preview
Download (25MB)
Cite this document: De Leener, B. (2014). Segmentation automatique de la moelle épinière sur des images de résonance magnétique par propagation de modèles déformables (Masters thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1471/
Show abstract Hide abstract

Abstract

RÉSUMÉ Les lésions de la moelle épinière, induites par des traumas (e.g. accident de la route) ou par des maladies neurodégénératives, touchent plus 85 000 personnes au Canada avec environ 4250 nouveaux cas chaque année1. Elles ont de plus un impact majeur sur la vie quotidienne des personnes atteintes, en provoquant des pertes de sensibilité et de contrôle moteur dont la gravité dépend de la taille et de l’emplacement des lésions. Bien qu’il existe des approches thérapeutiques permettant d’améliorer la réhabilitation fonctionnelle des patients, toutes ces approches se heurtent à une inconnue majeure : l’étendue des dégâts causés par les lésions. Un diagnostic précoce et précis des maladies neurodégénératives touchant la moelle épinière permettrait d’améliorer grandement l’efficacité de leurs traitements. Depuis de nombreuses années, l’IRM a prouvé son potentiel dans le diagnostic et le pronostic des lésions de la moelle épinière (Cadotte, 2011; Cohen-Adad et al., 2011). Ce domaine manque cependant encore d’outils complètement automatisés permettant l’extraction et la comparaison de métriques cliniques reliées à la structure de la moelle (aire de section transverse, volume, etc.). La segmentation de la moelle épinière sur des images IRM anatomiques peut fournir des mesures d’aires et de volumes de la moelle (Losseff et al., 1996) et peut quantifier son atrophie en cas de maladies neurodégénératives telles que la sclérose en plaques (Chen et al., 2013) et la sclérose latérale amyotrophique (Cohen-Adad et al., 2011). Ce projet de maîtrise vise à développer une méthode de segmentation complètement automatique de la moelle épinière, fonctionnant sur plusieurs types d’images IRM (pondérées en T1 et en T2) et sur n’importe quel champ de vue (cervical ou thoracique), et permettant d’extraire et de comparer des mesures précises de la moelle épinière. La revue de la littérature a permis de mettre en évidence le manque de méthode de segmentation automatique de la moelle épinière fonctionnant sur n’importe quel type de contraste et de champ de vue. Elle a toutefois fait ressortir une série de propriétés intéressantes, dans les méthodes semi-automatiques existantes, pouvant être combinées pour former une méthode complètement automatisée.----------ABSTRACT Spinal cord lesions affects more than 85,000 people in Canada with about 4,250 new cases every year. Lesions can be caused by traumatic injuries or by neurodegenerative diseases such as multiple sclerosis. They have an important impact on a patient’s daily life, inducing loss of sensibility or motor control in the human body. The extent of damages caused by a lesion varies with the number of damaged spinal cord tracks, and depends on the size and the position of the lesion within the spinal cord. Although therapeutic approaches for patient functional rehabilitation exist, they all face an unknown variable: the extent of spinal cord lesions. A precise and early diagnosis of neurodegenerative diseases would improve their treatment efficiency. For a number of years, MRI has demonstrated its potential in the diagnosis and prognosis of spinal cord lesions (Cadotte, 2011; Cohen-Adad et al., 2010). However, this research field still lacks of fully automatized tools for the extraction and comparison of clinical metrics related to the spinal cord structure (e.g. cross-sectional area, volumes). Spinal cord segmentation on anatomical MR images can provide accurate area and volume measurements (Losseff et al., 1996) and could quantify spinal cord atrophy caused by neurodegenerative diseases such as multiple sclerosis (Chen et al., 2013) or amyotrophic lateral sclerosis (Cohen-Adad et al., 2011). The objective of this Master’s project is to develop a fully automatic spinal cord segmentation method, working on multiple MR contrasts and any field of view, able to extract and compare accurate spinal cord measurements. The literature review pointed out the lack of such a method but highlighted several interesting features in existing methods, that can be combined to develop a new automatic segmentation algorithm. The method developed in this project is based on the multi-resolution propagation of a deformable model. First, the spinal cord position and orientation is detected in the image using an elliptical Hough transform on multiple adjacent axial slices. A low-resolution tubular mesh is then build around the detection point and direction and deformed on spinal cord edges by minimizing an energy equation. An iterative process, composed by the duplication, translation, orientation and deformation of the mesh, propagates the surface along the spinal cord. Finally, a refinement and a global deformation of the surface provide accurate segmentation of the spinal cord. Measurements can be directly extracted from the segmentation surface. The spinal canal can also be segmented with our method by simply inversing the gradient in the image and

Open Access document in PolyPublie
Department: Institut de génie biomédical
Dissertation/thesis director: Samuel Kadoury and Julien Cohen-Adad
Date Deposited: 22 Dec 2014 14:17
Last Modified: 27 Jun 2019 16:48
PolyPublie URL: https://publications.polymtl.ca/1471/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only