<  Back to the Polytechnique Montréal portal

Weakly-Labeled Data and Identity-Normalization for Facial Image Analysis

David Rim

PhD thesis (2013)

[img]
Preview
Download (2MB)
Cite this document: Rim, D. (2013). Weakly-Labeled Data and Identity-Normalization for Facial Image Analysis (PhD thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/1335/
Show abstract Hide abstract

Abstract

RÉSUMÉ Cette thèse traite de l’amélioration de la reconnaissance faciale et de l’analyse de l’expression du visage en utilisant des sources d’informations faibles. Les données étiquetées sont souvent rares, mais les données non étiquetées contiennent souvent des informations utiles pour l’apprentissage d’un modèle. Cette thèse décrit deux exemples d’utilisation de cette idée. Le premier est une nouvelle méthode pour la reconnaissance faciale basée sur l’exploitation de données étiquetées faiblement ou bruyamment. Les données non étiquetées peuvent être acquises d’une manière qui offre des caractéristiques supplémentaires. Ces caractéristiques, tout en n’étant pas disponibles pour les données étiquetées, peuvent encore être utiles avec un peu de prévoyance. Cette thèse traite de la combinaison d’un ensemble de données étiquetées pour la reconnaissance faciale avec des images des visages extraits de vidéos sur YouTube et des images des visages obtenues à partir d’un moteur de recherche. Le moteur de recherche web et le moteur de recherche vidéo peuvent être considérés comme de classificateurs très faibles alternatifs qui fournissent des étiquettes faibles. En utilisant les résultats de ces deux types de requêtes de recherche comme des formes d’étiquettes faibles différents, une méthode robuste pour la classification peut être développée. Cette méthode est basée sur des modèles graphiques, mais aussi incorporant une marge probabiliste. Plus précisément, en utilisant un modèle inspiré par la variational relevance vector machine (RVM), une alternative probabiliste à la support vector machine (SVM) est développée. Contrairement aux formulations précédentes de la RVM, le choix d’une probabilité a priori exponentielle est introduit pour produire une approximation de la pénalité L1. Les résultats expérimentaux où les étiquettes bruyantes sont simulées, et les deux expériences distinctes où les étiquettes bruyantes de l’image et les résultats de recherche vidéo en utilisant des noms comme les requêtes indiquent que l’information faible dans les étiquettes peut être exploitée avec succès. Puisque le modèle dépend fortement des méthodes noyau de régression clairsemées, ces méthodes sont examinées et discutées en détail. Plusieurs algorithmes différents utilisant les distributions a priori pour encourager les modèles clairsemés sont décrits en détail. Des expériences sont montrées qui illustrent le comportement de chacune de ces distributions. Utilisés en conjonction avec la régression logistique, les effets de chaque distribution sur l’ajustement du modèle et la complexité du modèle sont montrés. Les extensions aux autres méthodes d’apprentissage machine sont directes, car l’approche est ancrée dans la probabilité bayésienne. Une expérience dans la prédiction structurée utilisant un conditional random field pour une tâche d’imagerie médicale est montrée pour illustrer comment ces distributions a priori peuvent être incorporées facilement à d’autres tâches et peuvent donner de meilleurs résultats. Les données étiquetées peuvent également contenir des sources faibles d’informations qui ne peuvent pas nécessairement être utilisées pour un effet maximum. Par exemple les ensembles de données d’images des visages pour les tâches tels que, l’animation faciale contrôlée par les performances des comédiens, la reconnaissance des émotions, et la prédiction des points clés ou les repères du visage contiennent souvent des étiquettes alternatives par rapport à la tâche d’internet principale. Dans les données de reconnaissance des émotions, par exemple, des étiquettes de l’émotion sont souvent rares. C’est peut-être parce que ces images sont extraites d’une vidéo, dans laquelle seul un petit segment représente l’étiquette de l’émotion. En conséquence, de nombreuses images de l’objet sont dans le même contexte en utilisant le même appareil photo ne sont pas utilisés. Toutefois, ces données peuvent être utilisées pour améliorer la capacité des techniques d’apprentissage de généraliser pour des personnes nouvelles et pas encore vues en modélisant explicitement les variations vues précédemment liées à l’identité et à l’expression. Une fois l’identité et de la variation de l’expression sont séparées, les approches supervisées simples peuvent mieux généraliser aux identités de nouveau. Plus précisément, dans cette thèse, la modélisation probabiliste de ces sources de variation est utilisée pour identité normaliser et des diverses représentations d’images faciales. Une variété d’expériences sont décrites dans laquelle la performance est constamment améliorée, incluant la reconnaissance des émotions, les animations faciales contrôlées par des visages des comédiens sans marqueurs et le suivi des points clés sur des visages. Dans de nombreux cas dans des images faciales, des sources d’information supplémentaire peuvent être disponibles qui peuvent être utilisées pour améliorer les tâches d’intérêt. Cela comprend des étiquettes faibles qui sont prévues pendant la collecte des données, telles que la requête de recherche utilisée pour acquérir des données, ainsi que des informations d’identité dans le cas de plusieurs bases de données d’images expérimentales. Cette thèse soutient en principal que cette information doit être utilisée et décrit les méthodes pour le faire en utilisant les outils de la probabilité.----------ABSTRACT This thesis deals with improving facial recognition and facial expression analysis using weak sources of information. Labeled data is often scarce, but unlabeled data often contains information which is helpful to learning a model. This thesis describes two examples of using this insight. The first is a novel method for face-recognition based on leveraging weak or noisily labeled data. Unlabeled data can be acquired in a way which provides additional features. These features, while not being available for the labeled data, may still be useful with some foresight. This thesis discusses combining a labeled facial recognition dataset with face images extracted from videos on YouTube and face images returned from using a search engine. The web search engine and the video search engine can be viewed as very weak alternative classifier which provide “weak labels.” Using the results from these two different types of search queries as forms of weak labels, a robust method for classification can be developed. This method is based on graphical models, but also encorporates a probabilistic margin. More specifically, using a model inspired by the variational relevance vector machine (RVM), a probabilistic alternative to transductive support vector machines (TSVM) is further developed. In contrast to previous formulations of RVMs, the choice of an Exponential hyperprior is introduced to produce an approximation to the L1 penalty. Experimental results where noisy labels are simulated and separate experiments where noisy labels from image and video search results using names as queries both indicate that weak label information can be successfully leveraged. Since the model depends heavily on sparse kernel regression methods, these methods are reviewed and discussed in detail. Several different sparse priors algorithms are described in detail. Experiments are shown which illustrate the behavior of each of these sparse priors. Used in conjunction with logistic regression, each sparsity inducing prior is shown to have varying effects in terms of sparsity and model fit. Extending this to other machine learning methods is straight forward since it is grounded firmly in Bayesian probability. An experiment in structured prediction using Conditional Random Fields on a medical image task is shown to illustrate how sparse priors can easily be incorporated in other tasks, and can yield improved results. Labeled data may also contain weak sources of information that may not necessarily be used to maximum effect. For example, facial image datasets for the tasks of performance driven facial animation, emotion recognition, and facial key-point or landmark prediction often contain alternative labels from the task at hand. In emotion recognition data, for example, emotion labels are often scarce. This may be because these images are extracted from a video, in which only a small segment depicts the emotion label. As a result, many images of the subject in the same setting using the same camera are unused. However, this data can be used to improve the ability of learning techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. Once identity and expression variation are separated, simpler supervised approaches can work quite well to generalize to unseen subjects. More specifically, in this thesis, probabilistic modeling of these sources of variation is used to “identity-normalize” various facial image representations. A variety of experiments are described in which performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking is consistently improved. This includes an algorithm which shows how this kind of normalization can be used for facial key-point localization. In many cases in facial images, sources of information may be available that can be used to improve tasks. This includes weak labels which are provided during data gathering, such as the search query used to acquire data, as well as identity information in the case of many experimental image databases. This thesis argues in main that this information should be used and describes methods for doing so using the tools of probability.

Open Access document in PolyPublie
Department: Département de génie informatique et génie logiciel
Dissertation/thesis director: Christopher J. Pal
Date Deposited: 14 Apr 2014 11:02
Last Modified: 27 Jun 2019 16:49
PolyPublie URL: https://publications.polymtl.ca/1335/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only