Jean Bertrand Gauthier, Jacques Desrosiers et Marco E. Lübbecke
Article de revue (2016)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (1MB) |
Abstract
This paper describes three recent tools for dealing with primal degeneracy in linear programming. The first one is the improved primal simplex (IPS) algorithm which turns degeneracy into a possible advantage. The constraints of the original problem are dynamically partitioned based on the numerical values of the current basic variables. The idea is to work only with those constraints that correspond to nondegenerate basic variables. This leads to a row-reduced problem which decreases the size of the current working basis. The main feature of IPS is that it provides a nondegenerate pivot at every iteration of the solution process until optimality is reached. To achieve such a result, a negative reduced cost convex combination of the variables at their bounds is selected, if any. This pricing step provides a necessary and sufficient optimality condition for linear programming. The second tool is the dynamic constraint aggregation (DCA), a constructive strategy specifically designed for set partitioning constraints. It heuristically aims to achieve the properties provided by the IPS methodology. We bridge the similarities and differences of IPS and DCA on set partitioning models. The final tool is the positive edge (PE) rule. It capitalizes on the compatibility definition to determine the status of a column vector and the associated variable during the reduced cost computation. Within IPS, the selection of a compatible variable to enter the basis ensures a nondegenerate pivot, hence PE permits a trade-off between strict improvement and high, reduced cost degenerate pivots. This added value is obtained without explicitly computing the updated column components in the simplex tableau. Ultimately, we establish tight bonds between these three tools by going back to the linear algebra framework from which emanates the so-called concept of subspace basis.
Mots clés
[error in script]
Sujet(s): | 2700 Technologie de l'information > 2715 Optimisation |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | Natural Sciences and Engineering Research Council of Canada |
URL de PolyPublie: | https://publications.polymtl.ca/10634/ |
Titre de la revue: | EURO Journal on Transportation and Logistics (vol. 5, no 2) |
Maison d'édition: | Science Direct |
DOI: | 10.1007/s13676-015-0077-5 |
URL officielle: | https://doi.org/10.1007/s13676-015-0077-5 |
Date du dépôt: | 01 mars 2023 15:39 |
Dernière modification: | 02 déc. 2024 15:53 |
Citer en APA 7: | Gauthier, J. B., Desrosiers, J., & Lübbecke, M. E. (2016). Tools for primal degenerate linear programs: IPS, DCA, and PE. EURO Journal on Transportation and Logistics, 5(2), 161-204. https://doi.org/10.1007/s13676-015-0077-5 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions