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Abstract This paper describes three recent tools for dealing with primal degen-

eracy in linear programming. The first one is the improved primal simplex (IPS)

algorithm which turns degeneracy into a possible advantage. The constraints of the

original problem are dynamically partitioned based on the numerical values of the

current basic variables. The idea is to work only with those constraints that corre-

spond to nondegenerate basic variables. This leads to a row-reduced problem which

decreases the size of the current working basis. The main feature of IPS is that it

provides a nondegenerate pivot at every iteration of the solution process until op-

timality is reached. To achieve such a result, a negative reduced cost convex

combination of the variables at their bounds is selected, if any. This pricing step

provides a necessary and sufficient optimality condition for linear programming.

The second tool is the dynamic constraint aggregation (DCA), a constructive

strategy specifically designed for set partitioning constraints. It heuristically aims to

achieve the properties provided by the IPS methodology. We bridge the similarities

and differences of IPS and DCA on set partitioning models. The final tool is the

positive edge (PE) rule. It capitalizes on the compatibility definition to determine

the status of a column vector and the associated variable during the reduced cost

computation. Within IPS, the selection of a compatible variable to enter the basis

ensures a nondegenerate pivot, hence PE permits a trade-off between strict im-

provement and high, reduced cost degenerate pivots. This added value is obtained
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without explicitly computing the updated column components in the simplex

tableau. Ultimately, we establish tight bonds between these three tools by going

back to the linear algebra framework from which emanates the so-called concept of

subspace basis.

Keywords Primal simplex � Degeneracy � Combination of entering variables �
Positive edge rule � Nondegenerate pivot algorithm � Dynamic Dantzig–Wolfe

decomposition � Vector subspace

1 Introduction

When solving a linear program with the primal simplex (PS) algorithm (see Dantzig

1963), degeneracy comes in two flavors: degenerate solutions and degenerate

pivots. The first case is a question of observation; it is a dichotomous state of the

solution which either exhibits degenerate basic variables or does not. A basic

solution is degenerate if at least one of its basic variables is degenerate, that is, at its

lower or upper bound. Geometrically speaking, it corresponds to an over-

represented vertex meaning that several equivalent bases are associated with the

same solution. The second case is the algorithm’s culprit in more ways than one. In

fact, it is the only phenomenon which jeopardizes its convergence both theoretically

and empirically. Degeneracy questions the efficiency of the PS algorithm and

creates ambiguity in the post-analysis. On the one hand, degeneracy can affect the

efficiency in obtaining an optimal solution because it creates redundant work. More

specifically, a degenerate pivot amounts to trading one degenerate basic variable for

a nonbasic one. Since no gain is made with respect to the objective function, it is in

the aftermath of the computations that one ultimately realizes the wasted effort. It is

even possible to cycle meaning that the PS algorithm moves through a series of

bases eventually returning to an already visited one. If this happens indefinitely, PS

may not even converge (Schrijver 1986). On the other hand, a by-product of the PS

algorithm is the sensitivity analysis done after the optimization. Each constraint is

associated with a dual variable whose value depends on the chosen basis. Since an

optimal degenerate basis is not uniquely defined, it can mislead the interpretation of

two otherwise equivalent solutions.

It should be noted that column generation, used to solve linear programs with a

huge number of variables (Barnhart et al. 1998; Lübbecke and Desrosiers 2005), is a

natural extension of PS, and as such suffers from degeneracy as well. With that

being said, degeneracy is a phenomenon encountered particularly often for linear

programming relaxations of combinatorial optimization problems. Set partitioning

and set covering models are prominent examples of practical relevance: vehicle

routing and crew scheduling problems (and many related problems in transportation

and logistics) are most successfully formulated this way (Desrosiers et al. 1995;

Desaulniers et al. 1998).

Degeneracy has been under scrutiny for practically as long as linear program-

ming. We distinguish two lines of studies from the literature. The first aims to
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eliminate degeneracy altogether and the other provides guidelines to alleviate its

impact. On the first count, think of the work of (Charnes 1952) which revolves

around modifying the polytope of the whole solution space in such a way that no

two solutions ever share the same vertex. The concept amounts to right-hand side

perturbations thus creating slight variations in the way the hyperplanes intersect.

While the idea of eradicating degeneracy altogether is appealing, today’s simplex

codes use a more ad hoc strategy which sends us to the second count.

The contributions of Wolfe (1963) and Ryan and Osborne (1988) are abundant

evidence that applying this strategy as necessary is highly effective. The

perturbations are now applied in an adaptive manner and on a more local scale.

Stabilization extends the idea of perturbation by incorporating dual information.

Penalty functions, trust regions and expansion strategies are among the instrumental

concepts of stabilization as described in the papers of du Merle et al. (1999) and

Ben Amor et al. (2009). Column generation benefits from the latter as it tackles the

particular sensitivity to the values of dual variables during the resolution process.

Numerous pivot rules have also been proposed to avoid performing degenerate

pivots. In this regards, the work of Terlaky and Zhang (1993) is enlightening in

many respects. Indeed, while many of these rules share common properties and

sometimes even correspond to special cases of one another, they are distinguished

according to certain properties: feasibility maintenance, anti-cycling feature and

recursive nature. While there might have been hope about the performance of many

of these rules, even nondegenerate instances can be difficult to optimize as

supported by Klee and Minty (1972). The performance of a pivot rule may therefore

be considered as a trade-off between its complexity and the savings it procures with

respect to the number of iterations. The state of the art in terms of degenerate

problems seems to be the Devex rule of Harris (1973), see Terlaky and Zhang

(1993). We underline that regardless of their intricacies, all of these rules have a

limited gain with respect to the absence of guaranteed efficiency. That is, zero step

size pivots could still ensue from the chosen direction. The anti-cycling feature

present in Bland (1977) or Fukuda (1982) ensures this behavior does not happen

indefinitely. It is however generally accepted that taking expensive measures to

protect against cycling is not worthwhile.

A new trend appears in the late 1990s with the paper of Pan (1998) who

formulates a generic basis for degenerate solutions. Embedding this concept in a

column generation scheme led to the dynamic constraint aggregation (DCA)

algorithm of Elhallaoui et al. (2005, 2008) for the set partitioning problem. This

problem lends itself particularly well to such a concept because of its peculiar

structure. Indeed, it is this very structure that allows DCA to heuristically harness

the power of a generic basis and quite often find strictly improving pivots. The paper

of Elhallaoui et al. (2011) extends the algorithmic methodology with the improved

primal simplex (IPS). As its name would have it, this extension takes place with

regards to any linear programming problem. In a nut shell, the structure of a solution

is preemptively taken into account in order to drive the next pivot in a strictly

improving direction. That structure is dynamically updated with respect to the

current solution.
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The methodological paper at hand describes three tools for dealing with primal

degeneracy. At the heart of this framework lies the search for so-called compatible

column vectors and associated variables. Whether such a column exists as is in the

original problem or is constructed as a convex combination of these, it corresponds

to a direction in a polytope induced by a transformation of the original simplex. As

such, we believe that IPS provides a better starting point from which the other two

tools can benefit in terms of presentation. The second tool is of course DCA (which

was incidentally designed prior to IPS) and the third is the positive edge (PE) rule

(Raymond et al. 2010a; Towhidi et al. 2014). It is safe to say that DCA is a method

steered by practical imperatives. Yet, explaining the reason behind its performance

can now also be done in a straightforward manner in light of the IPS framework. PE

is yet another example of benefits obtained from a higher level of abstraction.

Indeed, while manipulating the set of compatible vectors can be computationally

efficient, identifying said set can be time consuming for large problems. PE aims to

simplify this verification by extracting the compatibility status during the reduced

cost computation using the original column data.

The paper is organized as follows: Sect. 2 first exposes the theory of IPS with

several hints to PS. By casting the linear algebra framework on our study, Sect. 3

presents another perspective of IPS. Section 4 addresses the more practical side with

regard to several implementation choices. The importance of compatibility in the

design of specialized applications is highlighted in Sect. 5. The similarities and

differences between IPS and DCA are examined in Sect. 6, while Sect. 7 reveals

PE. Various results from the literature are reported at the end of Sects. 4, 6 and 7

depending on the context of the underlying tool. Our conclusions end the paper in

Sect. 8.

Motivation In the words of Perold (1980), a great many degenerate iterations is

usually the resulting observation of degeneracy. As a matter of fact, it is not unusual

to see that when an average of 20 % of basic columns are degenerate, 50 % of the

iterations are degenerate. While the former statement gives a feel for the negative

impact of degeneracy, the second statement rapidly frames it within a quantitative

measure. The degenerate variables percentage of each basic solution encountered

during the resolution process is averaged over the number of iterations. As such, it is

certainly possible to characterize a linear program as degenerate if some basis

exhibits such a quality, yet it is much more interesting to measure the extent of this

pathology. The latter is based on empirical evidence. A linear program is thus said

to have a degeneracy level of b %, where b ¼ 20 corresponds to the average in

Perold’s example.

In the same vein, a whole class of linear programs can be qualified in the same

manner by computing the mean of these values. For instance, assignment network

problems have a degeneracy level of 50, or even 100 % if upper bounds are explicit.

We do not know of any guidelines to state that family classes are degenerate, but it

is fair to say that the level should be at least 20 %. In vehicle routing, it is

immediate how degeneracy occurs: Constraints represent (often large numbers) of

tasks to be covered by relatively few vehicles or crew members, that is, only few

variables assume a positive value, especially in an integer solution.

164 J. B. Gauthier et al.

123



Notation and terminology Vectors and matrices are written in bold face. We

denote by I‘ the ‘� ‘ identity matrix and by 0 (resp. 1) a vector/matrix with all

zeros (resp. ones) entries of contextually appropriate dimension. For a sub-

set I � f1; . . .;mg of row indices and a subset J � f1; . . .; ng of column indices, we

denote by AIJ the sub-matrix of A containing the rows and columns indexed by I

and J, respectively. We further use standard linear programming notation like AJxJ ,

the subset of columns of A indexed by J multiplied by the corresponding sub-vector

of variables xJ . The lower case notation is reserved for vectors and uses the same

subset index rules. In particular, the matrix A :¼ ðajÞj2f1;...;ng contains n column

vectors. Finally, there is one notable exception: The set N does not denote the

nonbasis but rather the set of basic and nonbasic variables at their lower or upper

bounds. Hence, for a linear program in standard form, xN represents the vector of

null variables.

The pricing step in the seminal IPS papers refers to solving a complementary

problem whereas it was later shown that IPS can be seen as a dynamic Dantzig–

Wolfe decomposition at every iteration. As a survey paper, we use a unifying

terminology and choose to define the pricing step as solving a pricing problem.

2 Improved primal simplex

This section first exposes the theory of IPS in the context of a linear program with

lower and upper bounded variables. It is based on the original papers of Elhallaoui

et al. (2011), Raymond et al. (2009, 2010b), Metrane et al. (2010) and its

generalization to row-reduced column generation (Desrosiers et al. 2014). However,

contrary to the original presentation, the choice of using a bounded linear program

in the description of IPS is becoming of its purpose. For instance, in set partitioning

problems, degenerate upper bounds are exploited for a faster resolution. Moreover,

the change of variables utilized for the row partition also becomes more apparent

with upper bounds.

We present in Sect. 2.1 the algorithmic steps of IPS. Section 2.2 provides the

proof of a necessary and sufficient optimality condition derived from the improved

pricing step. Section 2.3 presents a simplified version of IPS for linear programs in

standard form. For a better understanding of the concepts, an illustrative example is

given in Sect. 2.4 on a small linear program.

Consider a linear program (LP) with lower and upper bounded variables:

zH :¼ min c|x
s.t. Ax ¼ b; ½p�

l� x� u;

ð1Þ

where x; c; l; u 2 R
n, b 2 R

m, A 2 R
m�n, and m\n. We assume that A is a matrix

of full row rank and that LP is feasible and bounded. Finally, p 2 R
m is a vector of

dual variables associated with the equality constraints.
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2.1 Algorithmic steps

The main idea in IPS is to reduce the number of constraints from m to f , the number

of nondegenerate or free variables in a basic solution. The advantage of this row

reduction is a smaller working basis of dimension f � f rather than the usual larger

one of dimension m� m. This comes at the expense of a more involved pricing step

which solves a linear program of row size m� f þ 1 to select an improving subset

of columns, that is, a convex combination of columns with two properties: this

selection is compatible with the current row-reduced problem (see Definition 1) and

its reduced cost is negative. If such a combination exists, a strict improvement in the

objective function value occurs, otherwise the current solution is optimal. Figure 1

contains an overview of the main steps of IPS. The initialization contains the change

of variables, the input basic solution x0, and the associated column partition with

null variables set N. The main loop provides: (1) the construction of a generic basis

and the resulting linear transformation and row partition; (2) the definition of

compatibility; (3) the development of an improving pricing step; (4) the exchange

mechanism from a solution x0 to the next x1 which incidentally brings an inspiring

twist to the pivoting rule; (5) the update of the column partition.

Initialization Let x0, represented by ðx0
F ; x0

L; x0
UÞ, be a basic solution where the

three sub-vectors are defined according to the value of their variables: x0
L at their

lower bounds, x0
U at their upper bounds, and free variables lF\x0

F\uF . Free

variables are basic and they can move below or above their current value which

obviously makes them nondegenerate. Let there be f :¼ jFj such free variables,

0 � f �m. Partition the matrix A ¼ ½AF;AL;AU � and cost vector c| ¼ ½c|F; c|L; c|U �
accordingly. Although the change of variables is blindly applied, IPS retains only

those pertinent to the construction:

yL :¼ xL � x0
L; yL � 0

yU :¼ x0
U � xU ; yU � 0:

ð2Þ

Let N :¼ L [ U to form yN ¼ ðyL; yUÞ, the vector of currently null y-variables,
bounded above by rN , where rj :¼ uj � ‘j; 8j 2 N. Let d|

N :¼ ½c|L;�c|U � and define

A0
N :¼ ½AL;�AU �, that is, a0

j ¼ aj; 8j 2 L, and a0
j ¼ �aj; 8j 2 U. Given the ad-

justed right-hand side b0 :¼ b � ALx0
L � AUx0

U , LP becomes:

Initialization: basic solution x0;
change of variables;
column partition {F, L, U} and N := {L ∪ U};

1 Generic basis B, transformation B−1, row partition {P, Z} of AF ;
2 Compatibility with the row partition {P, Z} of AF <optional>;
3 Improved pricing step: optimize the minimum reduced cost μ;
4 Exchange mechanism from x0 to x1;
5 Update the column partition {F, L, U} and goto Step 1;

Fig. 1 IPS algorithmic steps
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zH ¼ c
|

Lx0
L þ c

|

Ux0
Uþ min c

|

FxF þ d
|

NyN

s.t. AFxF þ A0
NyN ¼ b0; ½p�

lF � xF � uF; 0� yN � rN :

ð3Þ

1. Generic basis B, transformation B�1, row partition fP; Zg of AF The current

solution being basic, the columns of AF are linearly independent. When f ¼ m,

there is no row reduction but the current solution is nondegenerate, and so is the

next pivot. Assume that f\m such that the basis associated with x0 contains de-

generate variables. Let us call basis completion the process of selecting m� f

variables taking value zero which complement AF by forming a nonsingular basis

matrix. Since any and all combinations of degenerate variables which may complete

the basis is as good as the next one, let us construct a generic m� m basis denot-

ed B. Such a basis is readily available using the f free variables associated with the

columns of AF together with m� f artificial variables. The selection of an appro-

priate set of artificial variables can be done by solving a restricted primal simplex

phase I problem over the columns of AF and those of the identity matrix Im with the

corresponding vector of artificial variables here denoted k:

min 1|k

s.t. AFxF þ Imk ¼ b0;
xF � 0; k� 0:

ð4Þ

Solving this problem is undoubtedly successful in accordance with the fact that

AFx0
F ¼ b0. Furthermore, this restricted phase I differs from a cold start phase I on

one key point: only the former can guarantee a basis in which all degenerate basic

variables are artificial ones. Let it be clear that this construction process identifies

some subset APF of exactly f independent rows from matrix AF . This provides the

row partition fP; �Pg of AF , where we use Z :¼ �P for notational convenience. The

generic basis B and its inverse B�1 are as follows:

B ¼
APF 0

AZF Im�f

� �
and B�1 ¼ A�1

PF 0

�AZFA�1
PF Im�f

" #
; ð5Þ

where the matrix APF of dimension f � f is the working basis. The basis B is one of

the many bases available to identify the over-represented vertex x0. As such, ob-

serve the sensitivity of the dual vector p| :¼ c|BB�1 with respect to the choice of

basis completion. LP becomes

zH ¼ c|Lx0
L þ c|Ux0

U þmin c|FxF þ d|

NyN

s.t. APFxF þ A0
PNyN ¼ b0

P; ½pP�
AZFxF þ A0

ZNyN ¼ b0
Z ; ½pZ �

lF � xF � uF ; 0� yN � rN :

ð6Þ

Let �b0 :¼ B�1b0 and
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�A0
N :¼ B�1A0

N ¼
�A0
PN

�A0
ZN

" #
¼ A�1

PFA0
PN

A0
ZN � AZFA�1

PFA0
PN

" #
: ð7Þ

The new LP formulation obtained after the change of y-variables and the left-

multiplication by the linear transformation B�1 of the set of equality constraints

(which incidentally also transforms the dual variables) makes degeneracy more

evident:

zH ¼ c|Lx0
L þ c|Ux0

U þmin c|FxF þ d|

NyN

s.t. xF þ �A0
PNyN ¼ �b0

P; ½wP�
�A0
ZNyN ¼ 0; ½wZ �

lF � xF � uF ; 0� yN � rN :

ð8Þ

The current solution is given by xF ¼ x0
F ¼ A�1

PFb0
P ¼ �b0

P while yN ¼ 0. Observe

that the constraints of LP are divided according to the actual values of �b0: for the

row set P, �b0
P [ 0; for the remaining rows in the set Z, �b0

Z ¼ 0. The dual vector p

can be retrieved from the above transformed dual vector w using the

expression p| ¼ w|B�1:

p
|

P ¼ w
|

PA�1
PF � w

|

ZAZFA�1
PF ð9Þ

p
|

Z ¼ w
|

Z : ð10Þ

2. Compatibility with the row partition fP; Zg of AF Observe that any solution

to (8), optimal or not, must satisfy �A0
ZNyN ¼ 0. This leads us to the first definition of

compatibility.

Definition 1 A vector a 2 R
m (and the associated variable, if any) is compatible

with the row partition fP; Zg of AF if and only if �aZ :¼ aZ � AZFA�1
PFaP ¼ 0.

One can derive from the formulation (8) that the column vectors of AF are

compatible (hence the free variables xj; j 2 F) as well as the transformed right-

hand side vector b0 (with no associated variable) but degenerate basic variables are

not.

3. Improved pricing step: optimize minimum reduced cost l. The variables xF are

basic in the row set P, hence the reduced cost vector �cF ¼ cF � wP ¼ 0 which

means that wP ¼ cF . With respect to the values of wZ , we recall the basis

completion paradigm whereby the selection of degenerate variables that complete

the basis influences the values of their associated dual variables. In other words, it is

possible to capitalize on this freedom and consider them undetermined. The current

solution x0 ¼ ðx0
F ; x0

L; x0
UÞ is optimal for (1), or equivalently ðxF ; yNÞ ¼ ðx0

F ; 0Þ is

optimal for (8), if there exists some dual vector wZ such that the reduced cost �dj of

every variable yj; j 2 N; is nonnegative, that is, �dj :¼ dj � c|F �a
0
Pj � w

|

Z �a
0
Zj � 0;

8j 2 N:
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Let l :¼ min
j2N

�dj be the smallest reduced cost for yN given wP ¼ cF but optimized

over wZ . Finding l can be formulated as a linear program:

max l
s.t. l � dj � c|F �a

0
Pj � w

|

Z �a
0
Zj; ½yj� 8j 2 N;

ð11Þ

where yj � 0; j 2 N; is the dual variable associated with the corresponding

inequality constraint. Let ~dj :¼ dj � c|F �a
0
Pj be the partial reduced cost of yj com-

puted by using dual vector wP ¼ cF , or equivalently ~d|

N :¼ d
|

N � c
|

F
�A0
PN in vector

form. Therefore, (11) becomes

max l
s.t. 1l þw

|

Z
�A0
ZN � ~dN ; ½yN �:

ð12Þ

Taking the dual of (12), the pricing problem is written in terms of yN , the vector of
currently null variables to price out:

l ¼ min ~d|

NyN

s.t. 1|yN ¼ 1; ½l�
�A0
ZNyN ¼ 0; ½wZ �
yN � 0:

ð13Þ

The pricing problem (13) can be solved by the dual simplex algorithm because only

the convexity constraint 1|yN ¼ 1 is not satisfied by the current value yN ¼ 0. For a
more recent analysis of the resolution of the pricing problem, Omer et al. (2014)

explore ways to warm start the basis notably with the use of more elaborate coef-

ficients for the convexity constraints. Alternatively, specialized algorithms can be

used in some applications. This is the case for LP defined as a capacitated minimum

cost network flow problem where the pricing problem (13) corresponds to a mini-

mum mean cost cycle problem which can be solved in OðmnÞ time by dynamic

programming Karp (1978). What ultimately matters is that we are looking for ex-

treme point solutions to (13) (see Gauthier et al. (2014)).

The number of positive variables in an optimal solution y0
N to (13) is at

most m� f þ 1, the row dimension of the pricing problem. The solution x0 is

optimal for LP if l� 0. Otherwise, l\0 and y0N identifies a convex combination of

columns such that �A0
ZNy0

N ¼ 0. Observe that by Definition 1, the vector A0
Ny0

N 2 R
m

is compatible with the row partition fP; Zg of AF . Let X be the set of all such

compatible convex combinations of columns.

4. Exchange mechanism from x0 to x1. The solution y0
N is utilized to move

from x0 to x1. Let the compatible column A0
Ny0

N be associated with a surrogate

variable hx; x 2 X, nonexistent from the original formulation. Parameters of hx

relative to formulation (8) are as follows: �a0w ¼ �a0
Pw

�a0
Zw

� �
¼

�A0
PNy0

N

0

� �
, reduced

cost l, cost d|

Ny0
N , and y0

N 6¼ 0. With the addition of the variable hx to the LP model

in (8), we have the following relations, where relevant parameters are indicated

within brackets:
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xF þ ½�a0
Px� hx ¼ �b0

P;
lF � xF � uF ; 0� ½y0

N � hx � rN :
ð14Þ

Regardless of its solution, observe that the pricing problem finds a partial improving

direction y0N of negative reduced cost value l, if one exists, uniquely completed by

y0
F , the impact in the row set P:

y0
F

y0
N

" #
¼

��a0
Px

y0
N

" #
¼ � �A0

PNy0
N

y0
N

" #
2 R

n: ð15Þ

The step size q is governed by the usual pivot rule. In (14), the entering variable hx
can increase up to the maximum change for yN , that is, y0

Nhx � rN , or according to

the maximum change for xF , that is, lF � �b0
P � �a0

Pxhx � uF . The step size q on hx is

given by

q :¼ min min
j2Njy0

j
[ 0

rj

y0j

( )
; min
i2Pj�a0

iw
[ 0

�b0i � li

�a0iw

� �
; min
i2Pj�a0

iw
\0

ui � �b0i
��a0iw

� �( )
: ð16Þ

A nondegenerate pivot occurs (q[ 0) and the objective function strictly improves

by

Dz ¼ ql ¼ q ~d|

Ny0
N : ð17Þ

The solution x0 is updated to x1 according to the direction expression in (15):

x1
F :¼ x0F � q �a0

Px

x1
L :¼ x0L þ q y0

L

x1
U :¼ x0U � q y0

U :

ð18Þ

The number of free variables in x1 is at most f þ ðm� f þ 1Þ � 1 ¼ m, that is, the

new solution can be more degenerate but it can also be less degenerate when several

variables of the convex combination become free.

Regardless of the manner in which one updates the current solution, the aftermath

is the result of an exchange mechanism. Even the ratio test performed to identify the

exiting variable in PS echoes this notion. Indeed, the exchange always happens in a

one-to-one fashion, while we have just seen that it can be more involved. Given the

current solution, the exchange mechanism provided in (18) starts in the pricing

problem (13) for the rows in set Z by finding in �A0
ZNyN ¼ 0; yN � 0, which induces

the partial directions y0
L and �y0

U for the vectors xL and xU , respectively. The

exchange process is afterward completed by using the rows in set P and interval

constraints in (14): the partial direction for the vector xF is given by ��a0
Px ¼

� �A0
PNy0

N and the step size is derived in expression (16). In the latter, it occurs

between xF and the entering variable hx;x 2 X.
5. Update column partition fF; L;Ug In the midst of obtaining the new

solution x1, every variable affected by the direction is identified. It is therefore easy
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to modify the status of each of these variables if necessary. Notice that the generic

basis B is inspired by the column partition F.

Special case y0j ¼ 1; j 2 N. The reader is invited to contemplate the special case

where the convex combination contains a single variable y0j ; j 2 N. The repercus-

sions are many in terms of mathematical simplifications but we are most interested

in the following one. The surrogate variable actually exists as is in the original

formulation (8) which means that some existing variables in set N are compatible

with the row partition fP; Zg of AF . In that case, the column a0
j ; j 2 N, enters the

basis B, l ¼ ~dj, and the step size q is computed according to the maximum increase

of variable yj. From (8), we have the following relations:

xF þ �a0
Pjyj ¼ �b0

P;
lF � xF � uF ; 0� yj � rj:

ð19Þ

The step size q on yj can increase up to the upper bound rj, or according to the

maximum change in the vector of free variables lF � �b0
P � �a0

Pjyj � uF:

q :¼ min rj; min
i2Pj�a0

ij
[ 0

�b0i � li

�a0ij

( )
; min
i2Pj�a0

ij
\0

ui � �b0i
��a0ij

( )( )
[ 0 : ð20Þ

The objective function z improves by Dz ¼ q~dj ¼ ql. Either j 2 L (xj is at its lower

bound) or j 2 U (xj is at its upper bound) and x0 is updated to x1 as

x1
F :¼ x0

F � q �a0
Pj

x1
L :¼ x0

L þ q y0
L

x1
U :¼ x0

U � q y0
U :

ð21Þ

The number of free variables in x1 is at most f , that is, the new solution can be more

degenerate. If q\rj, f decreases if more than one of the free variables reach their

bounds. Otherwise q ¼ rj, the corresponding xj variable changes bound and there-

fore stays degenerate in the new solution; the number of free variables decreases if

at least one free variable reaches a bound.

2.2 Characterization of linear programming optimality

In summary, when l� 0, the current solution x0 is optimal. Otherwise, l\0 and

we obtain a strict improvement of the objective function, update the current solution

from x0 to x1, and the process is repeated until the following necessary and

sufficient optimality condition is met.

Proposition 1 A basic feasible solution x0 ¼ ðx0
F; x0

L; x0
UÞ is an optimal solution to

the linear program (1) if and only if there exists a dual vector wZ such that l� 0 ,

as optimized by the primal-dual pair (12)–(13) of the pricing problem.

Proof The formulations (1) and (8) are equivalent. Because �cF ¼ 0, if there exists

some dual vector wZ such that d|

N � c|F
�A0
PN � w

|

Z
�A0
ZN � 0|; N :¼ L [ U, then
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ð�cF; �dNÞ� 0. Therefore, w| ¼ ðc|F;w
|

ZÞ provides a feasible dual solution to (8).

Since w
|

P
�b0
P ¼ c

|

Fx0
F , the primal and dual objective functions are equal and the

current feasible solution x0 is optimal for (1).

To show the converse, let x0 be an optimal solution to (1) and assume that l\0.

An optimal solution to the pricing problem (13) identifies a convex combination of

variables such that a nondegenerate pivot occurs (q[ 0) and the objective function

strictly improves by ql\0. This contradicts the optimality of x0 and completes the

proof. h

All simplex derivatives work according to the presumption of innocence.

Optimality is indeed assumed until proven otherwise. It is no different in IPS, yet it

is an amazing feat that the content of the pricing problem be reminiscent of the no

more, no less punch line. The sufficient condition answers to the first part, while the

necessary condition to the second.

2.3 IPS for a linear program in standard form

The reader may recall that incorporating lower and upper bounds in PS adds a

plethora of intricacies in the algorithmic analysis. Although the same is true of IPS,

we assumed the reader was sufficiently accustomed with the traditional algorithm.

In the spirit of conveying the general idea of IPS, it might be worthwhile to present a

simpler version. This basically amounts to removing the dimension U from the

formulation. The simplifications are threesome and correspond to the main steps of

IPS: creating the column and row partitions, building the pricing problem, and

modifying the current solution. Given LP in standard form

zH :¼ min c|x
s.t. Ax ¼ b; ½p�

x� 0;

ð22Þ

and a feasible solution x0 ¼ ðx0
F; x0

NÞ, the column partition step distinguishes be-

tween the currently nondegenerate (or free) basic vector x0
F and null vector x0

N :

zH ¼ min c|FxF þ c|NxN

s.t. AFxF þ ANxN ¼ b; ½p�
xF � 0; xN � 0:

ð23Þ

Recall the previous change of variables in (2). Since N now only contains variables

at their lower bounds, xN could be used interchangeably with yN . We maintain the

general presentation to underscore that the construction aims to find an improving

direction induced by yN . It should also be clear that A0
N ¼ AN , and b0 ¼ b.
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zH ¼ min c
|

FxF þ c
|

NyN

s.t. xF þ �APNyN ¼ �bP; ½wP�
�AZNyN ¼ 0; ½wZ �

xF � 0; yN � 0:

ð24Þ

Once again, the linear transformation B�1 performed on the original system un-

derlines the degeneracy of the current solution. Furthermore, any solution must

satisfy �AZNyN ¼ 0 in (24). Therefore, the pricing problem can be written in terms of

the vector of null variables to price out, and the current partial reduced cost

vector ~c|N :¼ c|N � w
|

P
�APN ¼ c|N � c|F

�APN :

l :¼ min ~c|NyN

s.t. 1|yN ¼ 1; ½l�
�AZNyN ¼ 0; ½wZ �

yN � 0:

ð25Þ

The solution x0 ¼ ðx0
F [ 0; x0

N ¼ 0Þ is optimal for LP in (22) if l� 0. Other-

wise l\0 and an optimal solution y0
N to (25) identifies a convex combination of

variables such that �AZNy0
N ¼ 0. The convex combination established by the pricing

problem may once again contain one or several y-variables. Let hx;x 2 X, be the

entering variable with the following parameters: reduced cost l, cost c|Ny0
N ,

and �ax ¼ �aPx

�aZx

� �
¼

�APNy0
N

0

� �
. What matters is that the ratio test (16) is now

computed with a single component:

q :¼ min
i2Pj�aix [ 0

�bi
�aix

� �
[ 0: ð26Þ

A nondegenerate pivot occurs and LP’s objective in (22) strictly improves by

Dz ¼ ql. Finally, x0 is updated to x1 as follows:

x1
F :¼ x0

F � q �aPx

x1
N :¼ q y0

N :
ð27Þ

Table 1 The simplex tableau at x0

x1 x2 x3 λ4 λ5 λ6 x4 x5 x6 x7 x8 θω

c 2 3 1 10 17 -20 14 -4 -5

1 2 2 1 -5 7 = 30 1
1 4 3 -5 10 -10 = 25 -2

1 -3 1 2 3 11 = 50 5
1 0 0 6 5 -13 = 0 0

1 0 0 3 4 -8 = 0 0
1 0 0 3 -4 0 = 0 0

x0 30 25 50 z0 = 185
c̃ -3 3 -9 -9 1 -6
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2.4 Numerical example

Table 1 depicts a linear program in standard form comprising eight x-variables and

six constraints. The degenerate solution x0 is already presented in the simplex

tableau format: ðx01; x02; x03Þ ¼ ð30; 25; 50Þ are the positive (or free) basic variables

and the basis has been completed with artificial k-variables in rows 4, 5 and 6. The

cost of this solution is z0 ¼ 185:

The vector c
|

F ¼ ½2; 3; 1�, equal to the dual vector for the top rows, is used for

computing partial reduced cost vector ~c|N ¼ ½�3; 3;�9;�9; 1�. By inspection, we

see that x4 and x5 are compatible with the row partition derived from the right-hand

side values. One can observe that the associated columns are (trivial) combinations

of the (unit) vectors of the free variables x1; x2 and x3.

Both compatible variables would provide a nondegenerate pivot if chosen as

entering variables but only x4 has a negative partial reduced cost value ~c4 ¼ �3

(which is also equal to its reduced cost �c4). The incompatible variables x6 and x7
possess a negative partial reduced cost value of –9 whereas ~c8 ¼ 1. The selection of

incompatible variable x6 or x7 would result in a degenerate pivot while that of x8
would increase the objective function by 1� ð30

7
Þ.

However, solving the pricing problem (25) over the last three rows results in a

combination of the incompatible vectors with weights: ðy06; y07; y08Þ ¼ ð0:4; 0:3; 0:3Þ.
This provides the compatible vector �a|x ¼ ½1�2 5 0 0 0� for the variable hx of

reduced cost l ¼ �9ð0:4Þ þ �9ð0:3Þ þ 1ð0:3Þ ¼ �6 and cost –5. The ratio test on

the top three rows results in q ¼ minf30
1
;�; 50

5
g ¼ 10. The entering variable hx

takes value 10 and provides a strict improvement of the objective function of

�6� 10 ¼ �60. As a result, x3 goes out of the basis, and other free variables x1 and

x2 are respectively updated to 20 and 45. Alternatively, the variables x6; x7 and x8
can be entered one by one in the basis, in any order, and this produces the same

result. In the new solution of cost 125, the positive variables are ðx1; x2; hxÞ ¼
ð20; 45; 10Þ or equivalently for x1 in terms of the original variables,

ðx1; x2; x6; x7; x8Þ ¼ ð20; 45; 4; 3; 3Þ while x3; x4 and x5 are null variables.

From the five columns corresponding to the positive variables, the first five rows

are independent and the artificial variable k6 is basic with a zero value in the last

Table 2 The basis B and its inverse at x1

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 -5 7

1 -5 10 -10

2 3 11

6 5 -13

3 4 -8

3 -4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B−1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 -0.20 -2.133 4.067

1 0.40 5.600 -9.800

0.08 0.453 -0.627

0.06 -0.327 0.613

0.06 0.007 -0.053

0 0 0 -2.667 4.333 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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row. The inverse basis B�1 at x1 appears in Table 2 and is used to construct the next

degenerate simplex tableau in Table 3.

A�1
PF , the inverse of the working basis within B�1, is used to compute the dual

vector c|FA�1
PF ¼ ½2; 3;�0:2;�1:133; 0:067� of the row set P and partial reduced

costs ð~c3; ~c4; ~c5Þ ¼ ð1:2;�6:6; 4:2Þ. Moreover,

�aZj ¼ �AZFA�1
PFaPj þ aZj ¼ 0; j 2 f3; 4; 5g;

characterizes column compatibility by computing

�aZ3 �aZ4 �aZ5½ � ¼ ð0; 0; 0;�2:667; 4:333Þ aP3 aP4 aP5½ � þ 0 0 0½ � ¼ 0 0 0½ �:

The null variables x3, x4 and x5 are compatible with the current row partition, and

the optimal solution to the pricing problem at iteration 1 is y14 ¼ 1: x4 enters the

basis, being the only one with a negative reduced cost of –6.6. The ratio test on the

top five rows results in q ¼ minf20
2:6 ;

45
2:8 ;�;�;�g ¼ 7:692 and the entering vari-

able x4 provides an objective function improvement of �6:6� 7:692 ¼ �50:769.
The variable x1 goes out of the basis, and updated free variables x2; x6; x7 and x8
appear in Table 4, here presented in terms of the simplex tableau at x2 before being

updated. Observe that the actual combination of variables x6, x7 and x8 satisfies the

last three rows at zero right-hand side. The cost of this solution is z2 ¼ 74:231.

B�1 for x2 appears in Table 5 from which c
|

FA�1
PF ¼

½�0:538; 3; 0:308; 4:282;�10:256� is computed and the partial reduced costs

ð~c3; ~c1; ~c5Þ ¼ ð0:692; 2:538; 8:769Þ. Since these are positive, x2 is optimal.

3 Linear algebra framework

To appreciate the generality of IPS, the reader is invited to consider its presentation

only borrows from the algebraic manipulations of PS. The linear algebra framework

Table 3 The simplex tableau at x1

x1 x2 x6 x7 x8 λ6 x3 x4 x5
c 2 3 -20 14 -4 1 10 17

1 -0.20 2.60 1.80 = 20
1 0.40 2.80 3.40 = 45

1 0.08 -0.24 0.08 = 4
1 0.06 -0.18 0.06 = 3

1 0.06 -0.18 0.06 = 3
1 0 0 0 = 0

x1 20 45 4 3 3 z1 = 125
c̃ 1.2 -6.6 4.2
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is put forth to derive another way to look at the row/column partition. Section 3.1

introduces the vector subspace VðAFÞ spanned by the column vectors of AF . This is

followed in Sect. 3.2 by the practical use of an equivalent subspace basis Kf . In

Sect. 3.3, we examine a different subspace basis, Kr, of possibly larger

dimension r� f that is sufficient to span AF . Section 3.4 discusses the pitfalls of

this more general subspace basis and a modified algorithm is given in Sect. 3.5. For

the record, the vector subspace notion is first mentioned in Benchimol et al. (2012)

for the implementation of a stabilized DCA algorithm for the set partitioning

problem.

3.1 Vector subspace VðAFÞ

The concept of compatibility is contextual by nature since it assumes a row partition

fP; �Pg of AF , where �P ¼ Z. The reader might have observed that we have taken the

liberty to omit this precision outside the definition of compatibility. It turns out that

this omission works well in our favor. The following result holds the explanation

Desrosiers et al. (2014) whereas Proposition 3 presents an alternative definition of

compatibility which is impervious to the partition.

Table 4 The simplex tableau at x2 before being updated

x4 x2 x6 x7 x8 λ6 x3 x1 x5
c 10 3 -20 14 -4 1 2 17

2 1 -5 7 1 2 = 30
4 1 -5 10 -10 3 = 25
-3 2 3 11 1 1 = 50

6 5 -13 = 0
3 4 -8 = 0
3 -4 0 1 = 0

x2 7.692 23.462 5.846 4.385 4.385 z2 = 74.231
c̃ 0.692 2.538 8.769

Table 5 The inverse basis B�1 at x2

B−1 =

⎡
⎢⎢⎢⎢⎢⎣

0.385 -0.077 -0.821 1.564
-1.077 1 0.615 7.897 -14.179
0.092 0.062 0.256 -0.251
0.069 0.046 -0.474 0.895
0.069 0.046 -0.141 0.228

0 0 0 -2.667 4.333 1

⎤
⎥⎥⎥⎥⎥⎦
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Proposition 2 Let APF and AQF be two working bases identifying different row

partitions of AF : If vector a is compatible with partition fP; �Pg then it is also

compatible with fQ; �Qg: Hence, we say a is compatible with AF:

Proof Assume the vector a is compatible with the partition fP; �Pg and consider

the following relation on set Q:

A�1
PFaP ¼ A�1

QFaQ () aQ � AQFA�1
PFaP ¼ 0: ð28Þ

The right part is verified for every component i 2 Q: true for i 2 Q \ �P since the

vector a is compatible whereas for i 2 Q \ P, ai � AiFA�1
PFaP ¼ ai � ai ¼ 0. Hence,

a �Q � A �QFA�1
QFaQ ¼ ai � AiFA�1

PFaP ¼ ai � ai ¼ 0 8i 2 �Q \ P

ai � AiFA�1
PFaP ¼ 0 8i 2 �Q \ �P;

(
ð29Þ

the last equality being true since the vector a is compatible with the parti-

tion fP; �Pg. h

Proposition 3 A vector a 2 R
m (and the associated variable, if any) is compatible

with AF if and only if it belongs to VðAFÞ.

Proof We first show that if Definition 1 is satisfied for some partition fP;Zg then

the statement rings true. We then show that the converse is also true. Assume that

the vector a is compatible such that �aZ ¼ aZ � AZFA�1
PFaP ¼ 0. Let a :¼ A�1

PFaP.

Then,
aP

aZ

� �
¼ APFa

AZFa

� �
meaning that the vector a indeed belongs to VðaFÞ. Let us

now assume that there exists some a 2 R
f such that the vector a is a linear

combination of the column vectors of AF . Since AF is a subspace basis, there exists

some row set P such that APF is invertible. Then, a ¼ A�1
PFaP and compatibility of

the vector a follows. h

A consequence of Proposition 3 is that every subset Kf of f independent vectors

of VðAFÞ can be used as a subspace basis for VðAFÞ. Let us explicitly recall the

definition of a vector basis as a linearly independent spanning set. A simple but

important observation is the following: The set of f independent vectors of AF

identified in IPS is therefore a minimal spanning set capable of representing the

current solution, AFx0
F ¼ b0. Indeed, the very construction of the working basis

in B implies that AF spans b0, that is, x0
F ¼ A�1

PFb0
P, see the system of linear

equations in (6) or (8).

3.2 Subspace basis Kf

The identification of the working basis is one of the bottleneck operations of IPS.

Furthermore, as the reader can observe from formulation (8), it is useless to

multiply by A�1
PF the rows in set P to identify the improving variable hx;x 2 X, if

any. Indeed, only �aPx needs to be computed to perform the ratio test (16). An
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alternative set to AF of f independent vectors that spans VðAFÞ is Kf ¼
If
M

� �
,

where M ¼ AZFA�1
PF . Together with K?

f ¼ 0
Im�f

� �
, it provides basis T :¼ ½Kf ;K

?
f �

of Rm and its inverse:

T ¼
If 0

M Im�f

� �
and T�1 ¼

If 0

�M Im�f

� �
: ð30Þ

The LP formulation obtained after the change of variables and the transformation by

the more practical T�1 results in an equivalent system for which only the rows in

set Z are transformed:

zH ¼ c|Lx0
L þ c|Ux0

Uþ min c|FxF þ d|

NyN

s.t. APFxF þ A0
PNyN ¼ b0

P; ½wP�
�A0
ZNyN ¼ 0; ½wZ �

lF � xF � uF ; 0� yN � rN ;

ð31Þ

where �A0
ZN ¼ A0

ZN � MA0
RN . Similarly to (9) and (10), p can be retrieved from the

dual vector w in (31) using the expression p| ¼ w|T�1:

½p|P; p
|

Z � ¼ w
|

P � w
|

ZM; w
|

Z

� �
: ð32Þ

When all is said and done, using vector subspace properties enables one to derive a

working basis using any and all efficient methods to extract an equivalent subspace

basis. Furthermore, depending on the application, the inverse is implicitly obtained

in M as a by-product of the decomposition. Of course, having access to the LP

solver’s own LU-decomposition would be quite practical. Note that although B
constructed in (5) is implicitly considered as a simplex basis in IPS, T is more

generally defined as a basis in R
m, that is, an invertible linear transformation in R

m.

3.3 Subspace basis Kr; r� f

Let us consider the general situation where r, the dimension of the subspace

basis Kr spanning the columns of AF , is larger than or equal to f , the number of free

variables. Assume Kr includes the f columns of AF and r � f � 0 additional

columns such that these r columns are linearly independent. Using a restricted

phase I, one identifies r independent rows in subset R � f1; . . .;mg and the

subspace basis can take the form Kr ¼
Ir
M

� �
, where M is an ðm� rÞ � r matrix,

whereas K?
r ¼ 0

Im�r

� �
. Let VðKrÞ be the vector subspace spanned by Kr. At the

end of the day, the definition of compatibility can be enlarged to the spanning set of

the chosen subspace basis.

178 J. B. Gauthier et al.

123



Definition 2 A vector a 2 R
m (and the associated variable, if any) is compatible

with Kr if and only if it belongs to VðKrÞ.

3.4 Words of caution about compatibility

Once the general form of the subspace basis Kr is retained, it is delicate to still

claim this modified version as IPS. If the latter can be seen as a poorer vector

subspace which obviously includes AF , the added granularity provided by the

superfluous columns yields a denser compatible set.

The danger of over-spanning AF is that a compatible surrogate variable hx;x 2
X; found by the pricing problem does not guarantee a strictly improving pivot.

Indeed, any value �a0
ix 6¼ 0; i 2 R; corresponding to �b0i ¼ 0; i 2 R; is potential cause

for a zero step size, hence a degenerate pivot. Observe that the magnitude of the

value �a0
ix is irrelevant, what really matters is its sign. In a very superficial sense, the

probability of making a degenerate pivot thus increases exponentially by one half

for every extra row, i.e., 1� ð1=2Þr�f
. When r[ f , the probability ranges from one

half to almost surely very rapidly. For that matter, even an incompatible variable

might induce a nondegenerate pivot with probability ð1=2Þm�f
. The reader is invited

to take a look at the variable x8 in the numerical example of Sect. 2.4 to be

convinced of the nondegenerate potential. Of course, a more refined analysis of the

probabilities would include the configuration of matrix A and at this point falls

outside the purpose of this paper.

In most if not all literature surrounding IPS and its derivatives, the concept of

compatibility is associated with a nondegenerate pivot. While it is true that in the

purest form of IPS, a compatible variable necessarily induces a nondegenerate pivot,

the implication of the previous paragraph denies this synonymy for the general form

of the subspace basis, as it stands the implemented version. What does this all

mean? The linear algebra framework that surrounds IPS provides a more robust

definition of compatibility. As the latter gains in flexibility, it loses in certainty.

Compatibility provides a way to categorize variables by their capacity to induce

nondegenerate pivots with fair accuracy. We guess researchers have taken the

liberty to address one for the other because of the intent behind the partition scheme.

A leap of faith comes to mind.

To sum up, this larger subspace basis Kr breaks away from the strictly improving

pivot construction of IPS. It is however a necessary evil that gives a lot of freedom

in the implementation and, more importantly, closes the theoretical gap between IPS

and DCA.

3.5 Modified IPS algorithm

Figure 2 contains the modifications necessary to include the linear algebra

framework to the vanilla version of IPS. In Step 1, the construction of the working

basis uses the representation T. For Step 2, the compatible set is constructed with

the alternative Definition 2. Steps 3 and 4 rely on the modified row partition fR; �Rg,
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but their essence remains otherwise untouched and therefore see no particular

caveat. Neither does Step 5.

4 Aiming for efficiency

This section serves the practical side of an implementation of IPS. The fourth step of

IPS, namely the exchange mechanism, brings the solution of the improved pricing

step back to what can be called a control system. This is indeed where feasibility is

maintained by using the flexibility of the free variables and the interval bounds

otherwise omitted from the pricing step. With that being said, this process of

information sharing between the pricing step and the control system is quite close to

a master problem/subproblem paradigm. In fact, with a better understanding of the

pricing step, we argue in Sect. 4.1 that IPS corresponds to dynamically applying a

Dantzig–Wolfe reformulation Dantzig and Wolfe (1960) at every iteration, the row

partition being done according to the current solution vector x0 given by

½x0
F; x0

L; x0
U �.

This interpretation of IPS can result in very flexible resolution strategies. Among

these is the usage of the convex combination x 2 X and its surrogate variable hx
opposed to the column components of x and their respective original x-variables.
We also know from column generation that generating several columns during one

iteration of the pricing step is highly efficient. In line with this idea also comes that

of using heuristics to solve the pricing problem during the early stage of the

resolution process. The fourth and perhaps most important idea defers to the time

consuming task of updating the row partition. Such is the content of the three

subsequent subsections (Sects. 4.2, 4.3 and 4.4) which examine these various ways

to accelerate IPS. Section 4.5 presents the dynamic Dantzig–Wolfe implementation

of IPS while Section 4.6 shares computational results gathered from different

papers.

4.1 Dynamic Dantzig–Wolfe decomposition

We now present an interpretation of IPS in terms of a decomposition scheme

proposed by Metrane et al. (2010) for standard linear programs. Here is an

adaptation for the bounded case.

Consider a Dantzig–Wolfe decomposition of the previous so-called compact

formulation (31) which has a block angular structure. The equality constraints in

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr ;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;
3 Improved pricing step: optimize the minimum reduced cost μ;
4 Exchange mechanism from x0 to x1;
5 Update the column partition {F, L, U} and goto Step 1;

Fig. 2 Modified IPS algorithmic steps
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set P together with the interval constraints lF � xF � uF and upper bounds yN � rN
stay in the master problem structure. The equality constraints in the row set Z and

nonnegativity constraints yN � 0 form the subproblem domain:

SP :¼ fyN � 0 j �A0
ZNyN ¼ 0g: ð33Þ

The Dantzig–Wolfe decomposition builds on the representation theorems by Min-

kowski and Weyl (see Schrijver 1986; Desrosiers and Lübbecke 2011) that any

vector yN 2 SP can be reformulated as a convex combination of extreme points

plus a nonnegative combination of extreme rays of SP. Moreover, SP is a cone for

which the only extreme point is the null vector yN ¼ 0 at zero cost. Since this

extreme point does not contribute to the master problem constraints, it can as such

be discarded from the reformulation. Vector yN can thus be expressed as a non-

negative combination of the extreme rays fyx
Ngx2X:

yN ¼
X
x2X

yx
Nhx; hx � 0; 8x 2 X:

Substituting in the master problem structure, LP becomes:

zH ¼ c|Lx0
L þ c|Ux0

Uþ min c|FxF þ
P

x2X½d
|

Nyx
N �hx

s.t. APFxF þ
P

x2X½A0
PNyx

N �hx ¼ b0
P; ½wP�P

x2X½yx
N �hx � rN ;

lF � xF � uF; hx � 0;8x 2 X:

ð34Þ

At any iteration of IPS, none of the h-variables are yet generated and the inequality

constraints in (34) are not binding. Therefore, the dual vector for these constraints is

null and the reduced cost of variable hx;x 2 X, is given by:

½d|

Nyx
N � � w

|

P½A0
PNyx

N � ¼ ðd|

N � w
|

PA0
PNÞyx

N ¼ ~d|

Nyx
N ;

where ~dN is the partial reduced cost vector already used in IPS, see formula-

tion (12). Now, any negative reduced cost ray in SP results in the same subproblem

minimum objective value, that is, �1. However, observe that for any nonzero

solution in the cone defined by SP in (33), there exists a scaled one such

that 1|yN ¼ 1. Therefore, without loss of generality, the domain of the subproblem

can be rewritten as

SPN :¼ fyN � 0 j �A0
ZNyN ¼ 0; 1|yN ¼ 1g: ð35Þ

Hence, an equivalent subproblem in this Dantzig–Wolfe decomposition, searching

for a negative reduced cost column until optimality is reached, is exactly the one

defined by the primal pricing problem (13) in IPS:

min ~d|

NyN s.t. yN 2 SPN : ð36Þ

The bottleneck of this algorithm is the improved pricing step. Recall that the content

of the latter is a ripple effect of the decomposition choice. These ideas can therefore

be separated in two categories: the first supports the idea that the master problem
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and the pricing step are communicating vessels, the second is solely aimed at the

pricing step in an effort to find solutions, not necessarily optimal, faster. Before

moving on to the three subsections which examine the aforementioned various ways

to accelerate IPS, let us recall how the master problem may be fed with surrogate

variables or their original column vector content.

4.1.1 Convex combination vs. column components

The weights y0
N dictate the content of convex combination x and ascertain the

compatibility requirement of the entering variable hx. By neglecting these weights,

the original column components of the convex combination can be fed directly to

the compact formulation (31) along with their associated original x-variables. While

this certainly seems counterproductive for the one direction, let us go through the

mechanics for the sake of argument. Discarding the weights also implies that the

compatible faith of this group of columns is lost. The active constraints in

the pricing problem must therefore also be passed to the compact formulation. The

latter can then obviously be solved to xN ¼ y0
Nhx, a process that leads to the same

objective value as would pivoting hx. The column components mechanics has the

potential to shine when one thinks of a column generation framework where

multiple columns are brought back to the restricted master problem. In this

perspective, the original column components fed to the compact formulation could

be arranged with their siblings from other directions at different levels thus granting

more freedom than the surrogate variables provide. Similar techniques to solve

large-scale linear multi-commodity flow problems were previously used by Löbel

(1998) and Mamer and McBride (2000), whereas Valério de Carvalho (1999, 2002)

propose a network-based compact formulation of the cutting stock problem in which

the classical knapsack subproblem is solved as a shortest path problem. In all these

applications, the compact formulation is written in terms of arc flow variables.

When a subproblem generates a path with a negative reduced cost, the arcs of this

path are iteratively added to the compact formulation. This process allows the

implicit combination of arcs into paths without having to generate these. Sadykov

and Vanderbeck (2013) describe this in generality.

4.2 Subspace basis update

Postponing the subspace basis update can be taken advantage of on two fronts:

before and after updating to the new solution x1. On the first front, it is indeed a

basic idea to harvest more information from the pricing problem than the one

iteration. Let this agenda be known as multiple improving directions. We present

two specific scenarios before the general one. The first scenario is the particular case

of independent improving directions while the second is the compatible restricted

master problem. On the second front, from the Dantzig–Wolfe mindset, it becomes

clear that entering an improving variable hw in the master problem (34) does not

necessarily warrant an update of the subspace basis. In either case, it is in effect a
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matter of manipulating the dual variables. The price to pay is the possibility of

making degenerate pivots on some of these directions.

4.2.1 Independent improving directions

IPS relies on the strictly improving property of the algorithm to guarantee that the

exchange mechanism goes through the components of hx with a strictly positive

step size, see (16). If two variables hx1
and hx2

can be identified from the pricing

problem such that compatibility is obtained from orthogonal vectors of VðAFÞ, then
�a0
x1

and �a0
x2

are independent from each other and can be added to the current

solution in any order both yielding a predictable improvement. Independence

constraints need not be added to the pricing problem in order to carry out this

strategy, it suffices to remove variables that already contribute in the first direction

of the variable hx1
. Indeed, the selection of columns the latter contains should of

course be removed from the pricing problem. Among themselves and variables of

xF used to complete the direction, these columns have nonzero elements on several

rows, i.e., they contribute on each of these rows. Any variable that sports a nonzero

value on any of these same rows shares a contribution and can therefore be removed

from the pricing problem. In other words, removing every variable that contributes

to the aforementioned rows amounts, for all intents and purposes, to discarding

these constraints as well.

4.2.2 Compatible restricted master problem ðRMPFCÞ

Consider the row partition fR; Zg of Kr, where Z ¼ �R. By Definition 2, the columns

of AF are compatible with Kr. Denote by A0
C; C � N, the columns of A0

N

compatible with Kr. Any of these can easily be identified in OðmÞ time using PE,

see Sect. 7. Let AI be the incompatible columns, I :¼ N n C. Using T ¼ ½Kr;K
?
r � as

a basis of R
m and applying the transformation T�1 ¼ Ir 0

�M Im�r

� �
on the

formulation (3), we have �a0
Zj ¼ �b0

Z ¼ 0; 8j 2 F [ C. Let �A0
ZI :¼ A0

ZI � MA0
RI . LP

becomes

zH ¼ c|Lx0L þ c|Ux0U þmin c|FxF þ d|

CyC þ d|

I yI
s.t. ARFxF þ A0

RCyC þ A0
RIyI ¼ b0

R; ½wR�
�A0
ZIyI ¼ 0; ½wZ �

lF � xF � uF ; 0� yC � rC; 0� yI � rI :

ð37Þ

Restricting the formulation (37) to columns in the set F [ C (the compatible vari-

ables) yields the compatible restricted master problem RMPFC defined on the row

set R, much easier to solve than (1) as it involves fewer variables and, more im-

portantly, fewer constraints. As such, it is less subject to degeneracy.

Of course, its optimal solution does not necessarily solve LP. It is equivalent to

having exhausted the pricing step of all improving compatible variables one

iteration after another without having updated the subspace basis. Whether one
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should update the latter now or retrieve more directions from the pricing step is

arguably the exact same question as one would face after the first direction is

retrieved from the complete pricing step.

4.2.3 Multiple improving directions

To have access to valid combinations of incompatible columns in A0
I , the Dantzig–

Wolfe decomposition obtained from x0 is maintained. Keeping in the subproblem

the equalities from the row set Z, the nonnegativity requirements yI � 0, and a

scaling constraint on yI leads to the following formulation.

min ~d|

I yI s.t. yI 2 SPI :¼ yI � 0 j �A0
ZIyI ¼ 0; 1|yI ¼ 1

� 	
: ð38Þ

As previously derived in Sect. 4.1, the substitution of the extreme rays generated

from SPI , yx
I ;x 2 X, into the master problem gives

zH ¼ c|Lx0
L þ c|Ux0

U þmin c|FxF þ d|

CyC þ
P

x2X½d
|

I yx
I �hx

s.t. ARFxF þ A0
RCyC þ

P
x2X½A0

RIy
x
I �hx ¼ b0

R; ½wR�P
x2X½yx

I �hx � rN ;
lF � xF � uF; 0� yC � rC; hx � 0;8x 2 X;

ð39Þ

and similarly to (9)–(10) or (32), the dual vector p can be retrieved using the ex-

pression p| ¼ w|T�1:

½p|R; p
|

Z � ¼ w
|

R � w
|

ZM; w
|

Z

� �
: ð40Þ

Ranging from heuristically modifying the dual variables to discarding certain y-
variables or type of solutions, extracting many interesting directions from the

pricing problem is then a matter of creativity. Notice that using all the compatible

variables in RMPFC is one such heuristic.

4.2.4 Postponing subspace basis update past x1

Once again, the row partition is only the fruit of a linear transformation T�1 at a

given iteration. We argue that using surrogate variables allows to reuse the previous

subspace basis because it is simply the result of the particular Dantzig–Wolfe

decomposition partitioning rows into fR; �Rg. Unfortunately, when more than one

former free variable becomes degenerate, the old subspace basis now spans

degenerate basic variables. It is therefore possible to maintain the old subspace basis

but it implies the use of the more general form Kr. In accordance with Sect. 3.3, we

state that an update is in order when the actual number of free variables jFj is
relatively different from jRj, the row size of the master problem.

4.3 Vector subspace flexibility

Given that the vector subspace is defined with respect to the matrix of free

variables AF , this section shows that it is even possible to play with the set of free
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variables as we see fit. The first trick cheats the free status with algebraic

manipulations while the other considers a particular type of upper bounds.

4.3.1 Coerced degeneracy

Another highly important concept is that of coerced degeneracy. This is used in the

capacitated minimum cost network flow problem which can artificially render any

current free variable into two degenerate ones on the residual network, see Ahuja

et al. (1993). Indeed, an arc variable xij taking a value ‘ij\x0ij\uij on the original

network formulation can be replaced by two variables representing upwards

(0� yij � uij � x0ij) and downwards (0� yji � x0ij � ‘ij) possible flow variations. The

current values of these y-variables is null and again this can modify the relative row

sizes of the master and the pricing problems. On either count, the choice of the

vector subspace results in a degenerate free pricing step.

4.3.2 Implicit upper bounds

Some applications have a structure that implicitly bounds some variables by the

sheer force of the technological constraints. For instance, the assignment and the

set partitioning models have such a feature. As a matter of fact, all variables in

both of these problems are bounded above by 1, yet the explicit bound needs not

be added to the formulation. That is to say that a variable xj features an implicit

upper bound uj if xj [ uj is infeasible regardless of the values of the remaining

variables.

Taking upper bounds into account is an obligatory path to guarantee strictly

improving directions. We argue that, in presence of implicit upper bounds, IPS can

be applied in two different manners with respect to the way these upper bounds are

taken into account. In the first case, upper bounds are stated in the formulation

whereas the second case omits them altogether. Assume the variable xj ¼ uj has

reached its implicit upper bound. In the explicit formulation, when an upper bound

is reached, it is taken into account thus sending xj in the pricing problem. In the

silenced formulation, the variable xj ¼ uj is assumed to be free.

Since the bound is implicit, it should be obvious that both pricing problems

should yield only nondegenerate directions. It is trivial in the first case since the

upper bound is explicitly taken into account. In the second case, it must be shown

that the pricing problem cannot identify a direction that would increase the

variable xj. The fact that xj � uj is implicit from the set of technological constraints

translates into the coefficients of the hx-variables in (14) as these can be derived

from the Dantzig–Wolfe reformulation in (34), equivalent to the original formu-

lation. Therefore, one finds the following equality constraint for xj when it reaches

its implicit upper bound:
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xj þ ½�a0jx�hx ¼ uj;

where hx � 0; 8x 2 X. Since xj � uj, coefficients ½�a0jx� � 0; 8x 2 X, and the as-

sumed free variable xj can only decrease during the exchange mechanism.

The main difference between these two choices echoes the vector sub-

space VðAFÞ and thus the set of compatible variables, see Proposition 3. Consider

vector subspaces spanned by AF which contains or not implicit bounded variables.

The distinction lies in the compatibility set and different AF modify the relative row

sizes of the master (f ) and the subproblem (m� f þ 1). The added granularity

provided by the additional vectors in the first case creates a denser linear span and

thus allows more variable compatibility.

Observe that variables in N are always treated correctly by the pricing problem

since they are observably at one of their bounds. The extension of this result is that a

variable in N could be assumed to be free, if it can be shown that its current value is

an implicit upper bound. While some very preliminary results are available in

Sect. 4.6 with respect to implicit bounds formulations, both the theoretical and

practical implications have yet to be explored meaningfully. This concept even has

an impact within the scope of PS; a variable at its implicit bound could be either

basic or nonbasic in the former case whereas it would necessarily be basic in the

second.

4.4 Partial pricing

In this subsection, we discuss possible partial pricing choices to accelerate the

resolution process of the pricing step without compromising optimality. That is, as

long as the last iteration uses the complete model, intermediate pricing steps can use

heuristic notions. Partial pricing strategies become appealing in diversified aspects.

For example, one can use various subsets of compatible and incompatible variables

to reduce the density of the pricing problem. We present three such biases: partial

cost, residual capacity, and rank-incompatibility. These ideas can of course be

mixed as deemed worthy.

4.4.1 Partial cost bias

An incompatible variable j 2 N can be temporarily discarded if its partial reduced

cost ~dj is greater than some threshold value, the most simple one being zero.

4.4.2 Residual capacity bias

The idea of this bias is to guarantee a minimum step size q. One look at the modified

ratio test (16) suffices to see that the residual capacity bias also involves free

variables. On the one hand, we want to keep the variable j 2 N if its residual

capacity rj is relatively large. On the other hand, the coerced degeneracy principle

must be used on free variables to keep only those where both values �b0i � li and

ui � �b0i ; i 2 R are large. Since the ratio test also depends on �a0ix, it makes this
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guarantee all the more difficult to appreciate on arbitrary matrices A. Nevertheless,

the idea works well when it is embedded in the minimum mean cycle-canceling

algorithm, an extreme case of row partition where jFj ¼ 0 since coerced degeneracy

is applied on all free variables. Observe that once the coerced degeneracy is applied,

it might be possible to keep one of the coerced free variables in the pricing problem.

4.4.3 Rank-incompatibility bias

Another possibility is to define the pricing step against rank-incompatibility. This

means that the incompatible variables are attributed a rank according to the degree

of incompatibility they display. The pricing problem sequentially uses lower rank

incompatible variables. Intuitively, the point is not to stray too far from the current

compatibility definition and thus limit the perturbation caused by modifying it. This

concept is first seen under the name Multi-phase DCA (MPDCA) in the paper of

Elhallaoui et al. (2010).

4.5 Dynamic Dantzig–Wolfe algorithm

Figure 3 presents the implemented version of IPS inspired by the dynamic Dantzig–

Wolfe construction. The first two steps recuperate the linear algebra work. The

biggest modification thus entails the work done in Step 3 which is now broken down

into smaller components. The first utilizes RMPFC by solving a row-reduced master

problem with only compatible variables. The second calls the pricing problem

where dual multipliers are updated and only incompatible variables remain. The

latter can be solved several times to retrieve many possibly improving directions

using whatever arsenal available to the user to accomplish said task. Finally, the

exchange mechanism in Step 5 can be applied to every predetermined direction, yet

it is simpler to let a PS code create a new working basis using all the gathered

information simultaneously. The reason for this are threefold. First, it ensures that

the solution x1 is basic. Second, it fetches updated dual multipliers for the row set R

in case the generic basis is not updated. Third, it allows for a possibly better solution

than the sequential work. With this new solution x1, the algorithm loops and the

partition may (goto Step 1) or may not (goto Step 3b) (in the surrogate variable

environment) be updated. The pricing step will be influenced by new dual variables

either way.

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr ;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;

3a Restricted master problem: solve RMPF C to optimality <optional goto Step 5>;
3b Improved pricing step: optimize the minimum reduced cost μ <optional repeat>;
4 Exchange mechanism from x0 to x1;
5 Update the column partition {F, L, U} and goto Step 1 <optional goto Step 3b

instead>;

Fig. 3 Dynamic Dantzig–Wolfe algorithmic steps
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4.6 Computational results for IPS

As the reader might have guessed, these ideas must be meticulously handled in the

practical implementation of IPS for it to be competitive. The computational results

for the latter have therefore been deferred to this point. Linear programs in standard

form have been used for the comparison between IPS and CPLEX’s PS. The two

main ideas used to obtain these results are the subspace basis update along with the

compatible restricted master problem and the multiple improving directions.

On 10 instances involving 2,000 constraints and up to 10,000 variables for

simultaneous vehicle and crew scheduling problems in urban mass transit

systems (VCS), IPS reduces CPU times by a factor of 3.53 compared to CPLEX’s
PS (Elhallaoui et al. 2011; Raymond et al. 2010b). These set partitioning problems

have degeneracy levels of about 50 %. Although these instances have been

randomly generated, Haase et al. (2001) have constructed their generator such that

the main features of real-life VCS are reflected.

IPS is also tested on 14 instances of aircraft fleet assignment (FA). These consist

in maximizing the profits of assigning a type of aircraft to each flight segment over a

horizon of one week. The content of the multi-commodity flow formulation for each

of these instances can be resumed with these ballpark figures: a degeneracy level of

65 %, 5,000 constraints and 25,000 variables. IPS reduces CPU times by a factor

of 12.30 on average compared to CPLEX’s PS. While both types of problems are

solved by column generation, the IPS methodology is tested by saving thousands of

variables from the generator obviously including the optimal ones.

In these fleet assignment problems, an upper bound of 1 can explicitly be

imposed on arc flow variables (see the discussion in Sect. 4.3). Hence, degeneracy

occurs for basic variables at 0 or at 1. The comparison is still done against CPLEX’s
PS but the upper bounds are explicitly added in both solvers. CPU times are reduced

by a factor of 20.23 on average for these LPs Raymond et al. (2009). These IPS

algorithms have yet to be compared together.

On another note, opposing the convex combination to its column components

content has been tested as follows: Computational experiments conducted with a

hybrid algorithm starting with the classical generated columns (the surrogate

variables) for the restricted master problem and ending with the column components

(the original x-variables) for the compact formulation shows improving average

factors of 3.32 and 13.16 compared to CPLEX’s PS on the previously mentioned

VCS and FA problems Metrane et al. (2010).

5 Designing around compatibility

As supported by the vector subspace and the subspace basis flexibility, the

compatibility notion is indeed quite flexible. In fact, when solving particular linear

programs, the existing specialized algorithms, devised within the confines of IPS,

that have proved to be successful share the common trait of being designed around

and for compatibility. Sections 5.1 and 5.2, respectively, address network and set

partitioning problems.
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5.1 Network flow

In the context of the capacitated minimum cost flow problem, one refers to a

solution x as a cycle free solution if the network contains no cycle composed only of

free arcs, see Ahuja et al. (1993). Any such solution can be represented as a

collection of free arcs (the nondegenerate basic arcs forming a forest) and all other

arcs at their lower or upper bounds. The column vectors of the free arcs form AF ,

see Fig. 4.

According to Proposition 3 and the flow conservation equations, an arc at its

lower or upper bound is compatible if and only if it can be written in terms of the

unique subset of free arcs forming a cycle with it Desrosiers et al. (2014).

Therefore, a compatible arc simply links two nodes belonging to the same tree of the

forest. By opposition, an incompatible arc links two nodes of two different trees.

This characterization allows us to better understand the mechanism of improving

cycles in networks. A feasible solution is optimal if and only if there is no negative

cost directed cycle on the residual network. Two types of cycles can result from the

pricing problem: a cycle containing a single compatible arc together with some free

arcs of the same tree, or a cycle containing at least two incompatible arcs together

with possibly some free arcs from different trees of the forest.

In Fig. 5, the dotted arc ð8; 9Þ is compatible and forms a directed cycle with the

free arcs ð9; 10Þ, ð10; 11Þ, and ð11; 8Þ. Indeed, the associated column in rows 8

through 11 are such that

1

6
5

2

11

10

9

8

7

3

14 13

12

4

i j
Free

Fig. 4 Forest of free arcs in AF on a residual network
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The dashed arc ð6; 9Þ links two different trees and is therefore incompatible. This is

also the case for some other arcs, e.g., ð8; 12Þ, ð3; 4Þ and ð4; 6Þ. The reader may

verify that the sum of the associated four columns is compatible as it can be written

as the negated sum of the columns associated with the free arcs ð9; 10Þ, ð10; 11Þ,
ð11; 8Þ and ð12; 13Þ, ð13; 3Þ. Indeed, these nine arcs form a directed cycle in the

residual network.

Since IPS only makes nondegenerate pivots, it converges to optimality in a finite

number of iterations on integral data network flow problems. Desrosiers et al.

(2013) show that IPS is strongly polynomial for binary network problems, e.g.,

assignment, single shortest path, and unit capacity maximum flow. With a slight

modification, it becomes strongly polynomial for solving the capacitated minimum

cost network flow problem. The proposed contraction-expansion IPS-based

algorithm is similar to the minimum mean cycle-canceling algorithm, see Goldberg

and Tarjan (1989); Radzik and Goldberg (1994). On a network comprising n nodes

and m arcs, it performs Oðm2nÞ iterations and runs in Oðm3n2Þ time for arbitrary

real-valued arc costs.
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Fig. 5 Compatibility characterization of degenerate arcs on a residual network
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5.2 Set partitioning

The set partitioning problem (SPP) can be formulated as the binary linear program

min c|x s.t. Ax ¼ 1; x 2 B
n; ð41Þ

where A 2 B
m�n. This formulation can be seen as a generic model encountered in

various applications, namely, in vehicle routing and crew scheduling, and many

more where the aim is to perform a clustering of the rows. In such applications, each

set partitioning constraint can be associated with a task i 2 f1; . . .;mg that must be

covered exactly once. Such a formulation arises naturally from applying a Dantzig–

Wolfe reformulation to a multi-commodity flow model in which each vehicle or

crew member is represented by a separate commodity, see Desrosiers et al. (1995)

and Desaulniers et al. (1998).

In order to express the fundamental exchange mechanism of set partitioning

solutions, we assume that the current vector xF is binary. Figure 6 should help

demystify the concept of compatibility on SPP.

In the left-hand side, we find the binary input solution defined by the three

independent columns of AF . According to Proposition 3, the next column identified

by x4 is compatible with the given partition as it covers exactly the first and third

clusters. The third set shows the two incompatible columns x5 and x6. None can be

generated by the columns of AF . However, their addition is compatible with the

given partition as it covers the first and second clusters of rows. Finally, the right-

hand side set exhibits three incompatible columns, x7, x8 and x9: their combination

with equal weights of 1/2 is compatible as it covers the second and third clusters of

the row partition. Notice that this combination breaks the integrality of the next

solution.

The compatible columns are readily available as the spanning set of AF as per

Proposition 3: a binary column is compatible if and only if it covers some of the

clusters. Therefore, the interpretation of compatibility can be seen as a question of

coverage. When the selected column is a combination of incompatible columns, the

exchange mechanism removes elements from some clusters to insert them back in

other clusters.

When the input solution is fractional, the mathematical definition of com-

patibility (Definition 1 or Proposition 3) still holds but the interpretation loses

practical meaning. In order to sidestep this unfortunate loss, we can fall back on Kr

(Definition 2) and adjust the subspace basis interpretation with respect to an

aggregation/clustering scheme. The idea is to assume that certain tasks are done

AF x4 x5 x6 x7 x8 x9

1 1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1 1

Fig. 6 Compatibility
characterization for set
partitioning binary solution xF
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together and it is the cornerstone of DCA as described in the following section.

Historically speaking, DCA is a self-standing algorithm devised for set partitioning

models which provides an easy way to define a specialized vector subspace that

often shares the properties of the one designed for IPS. The next section discusses

the differences and similarities that arise between the two methods. We insist that it

is in retrospective that the ties between DCA and IPS have been better understood.

6 Dynamic constraint aggregation

It is the first time DCA and IPS are studied in parallel. While they share several

similarities, we hope to dissolve the confusion that arises between the two theories

by highlighting their differences. IPS relies on the linear algebra framework to

ascertain its faith and is therefore constructive by nature. It turns out that DCA is

also born from a constructive design. This design is however limited by the

embryonic intuition of a reduced basis. Let it be said that DCA is an intuitive

precursor to IPS.

In a nutshell, the differences spring forth from the choice of the vector subspace

to represent the current solution. Recall the subspace basis Kf and the equivalent

generic transformation T�1, DCA disregards this choice and uses the general

subspace basis format. It constructs Kr; r� f , large enough to span AF . Let us see

how and why it performs well.

In Sect. 6.1, we derive a row partition using a simple construction. The method is

then applied in Section 6.2 on a set partitioning problem. The inexistent pricing step

of DCA is explained in Sect. 6.3. An overview of the algorithm is illustrated in

Sect. 6.4. Section 6.5 meditates on the integrality dimension of SPP. Finally,

computational results are summarized in Sect. 6.6.

6.1 Kr derived from the identical rows of AF

The idea behind DCA is similar to the first step of a LU-decomposition for AF .

Some of the rows which can easily be identified as null entries after elimination are

actually identical rows. Of course, such a strategy might propose a set of constraints

where some rows are redundant because linear independence is not thoroughly

verified. Nevertheless, the separation between unique and identical rows induces a

partition of the rows. The size of the partition is expressed as the number of

clusters r� f of identical rows in AF . Consider the following generic example

where AF contains six rows distributed into three clusters. The first step ð7!Þ
consists of a permutation of the lines such that the top rows are unique and the

bottom rows are duplicates. The second step ð	Þ provides a subspace basis Kr

where each row cluster is associated with a unique 1-column identifier. Observe that

by construction the top rows always correspond to Ir in the vector subspace, hence

the subspace basis is of the form Kr ¼
Ir
M

� �
:
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AF⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r1

r1

r2

r3

r3

r3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r1

r2

r3

r1

r3

r3

≡

Λr⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

The subspace basis Kr may over-span AF if r[ f . In other words, when r ¼ f we

get from Proposition 3 that the decomposition is minimal and exactly corresponds

to a generic basis of IPS. When r[ f , Kr may lead to degenerate pivots although

hopefully less than with PS.

6.2 DCA on set partitioning models

DCA is devised solely for the set partitioning problem. It capitalizes on the

compatibility interpretation and characterization of set partitioning optimal

solutions. A binary solution to (41) is usually highly degenerate. Indeed, in typical

vehicle routing and crew scheduling applications, a cluster covers several tasks, say

on average �m, which implies that the number of variables assuming value one in the

basis is of the order m= �m. The idea of row aggregation is born.

Assume for the moment that the linear relaxation of the set partitioning

formulation (41) is written in standard form, that is,

zH :¼ min c|x s.t. Ax ¼ 1; x� 0: ð42Þ

We present three situations that can occur in DCA. The first assumes the current

solution is binary while the second and third consider a fractional input for which

the partition is the same as the IPS decomposition for the former and different for

the latter.

If xF is binary, the corresponding columns of AF are disjoint and induce a

partition of the row set into f clusters. From AF , it is easy to construct a reduced

working basis: take a single row from each cluster and therefore, upon a

permutation of the columns and rows of A, matrix APF is If . This is illustrated with

the following integer solution: ðx1; x2; x3Þ ¼ ð1; 1; 1Þ:
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AF⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

1

≡

Λf⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

1

.

If xF is fractional, the row partition is again derived from the number of clusters

r� f of identical rows of AF . If r ¼ f , we can again construct a working basis as in

IPS. Take the first row from each cluster to form APF while the m� f rows of AZF

are copies of the f independent rows of APF . Right multiplying AF by A�1
PF provides

the subspace basis Kf ¼
If

AZFA�1
PF

� �
: This alternative subspace basis is similar to

the one obtained from a binary solution. This is illustrated with the following 3-

variable fractional solution ðx1; x2; x3Þ ¼ ð0:5; 0:5; 0:5Þ:
AF⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

≡

Λf⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

1

1

.

The third example shows a subspace basis Kr with r[ f induced by xF ¼
ðx1; x2; x3; x4Þ ¼ ð0:5; 0:5; 0:5; 0:5Þ. AF comprises five clusters of identical rows,

hence Kr has a dimension of r ¼ 5. The row vectors satisfy r1 þ r3 ¼ r2 þ r5 and

IPS would have discarded one of these to construct APF of dimension f ¼ 4.
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AF⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

≡

Λr⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

1

1

1

1

1

1

1

.

The idea of compatibility steered the research and the implementation of DCA and

its variants. In the context of routing and scheduling, compatibility thus means

generating itineraries or schedules which precisely respect the current clustering

into multi-task activities. Of course, this is in perfect harmony with Definition 2.

From the above discussion, we see that the subspace basis Kr is derived from the

solution of the linear relaxation formulation (42). However, the process can be

initialized from any partition Kr of the rows: this can be done in a heuristic manner,

even infeasible. This simply results in a linear transformation T�1 applied on the

system of equality constraints, updated when needed.

6.3 Resolution process

The resolution process of DCA uses several properties presented in Sect. 4. In fact,

RMPFC is implemented under the name of aggregated restricted master problem

by Elhallaoui et al. (2005). The missing part of the puzzle, now provided by IPS, is

the pricing problem (38). Since DCA did not have such a feature when it was

originally designed, let us take a look how it manages to pursue the optimal

solution.

Let us go back to basics and consider an optimal basic solution to RMPFC , that is,

the formulation (37) restricted to the column set F [ C (the compatible variables).

From now on assume F represents the index set of the free variables in this so-called

current solution, where f � r, and wR is an optimal dual vector. If f ¼ r, the matrix

ARF is the current working basis as in IPS; otherwise f\r and the working basis is

the final PS basis provided with the optimal solution, the one that serves to

compute wR. In any case, we have �cF ¼ cF � w
|

RARF ¼ 0 for basic variables xF and

�cC ¼ cC � w
|

RARC � 0 by optimality. The current solution is optimal if

�cI ¼ cI � w
|

RARI � w
|

Z
�AZI � 0:

While solving RMPFC, the neglected constraints in the row set Z have no dual

information on wZ . As in IPS, reduced costs �cI are partial to the chosen partition.

Yet, optimality of current solution is either true or false. The same reduced costs

written with respect to the original dual vector, �cI ¼ cI � p|AI ; highlight the
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possibility of adapting dual vector wR to p. The answer appears in (40), ½p|R; p
|

Z � ¼
½w|

R � w
|

ZM;w
|

Z �; which leads us to

p
|

R þ p
|

ZM ¼ w
|

R: ð43Þ

As every column of the binary matrix M in a set partitioning problem identifies the

remaining rows of a cluster, it means that wi; i 2 R, the dual variable of a cluster,

must be distributed across the rows of its cluster, that is, (43) reads as
P

‘2Ri
p‘ ¼

wi; 8i 2 R: Note that 8i 2 R, no matter how the wi are distributed over their re-

spective clusters, �cF ¼ 0 and �cC � 0 remain satisfied. Therefore, consider the fol-

lowing set of constraints:

p|aj � cj; 8j 2 I; ð44Þ
X
‘2Ri

p‘ ¼ wi; 8i 2 R: ð45Þ

Notice that the system (44)–(45) is about feasibility. On the one hand, it is indeed

feasible which means that the existence of acceptable dual variables certifies the

optimal status of the current solution. On the other hand, it is infeasible: some

constraints from (44) are removed until one retrieves a vector p. Given those p

values, DCA next prices out variables as in PS. A small selection of negative

reduced costs incompatible variables is presumptuously added to current AF , say

columns AI0 ; I
0 
 I, such that a new partition is induced by the identical rows in

½AF ;AI0 �, where f þ jI0j �m. This yields a new subspace basis Kr; r[ f , at which

point the algorithm proceeds with a new iteration, solving RMPFC over a new set of

constraints and compatible variables.

In DCA, the exercise of distributing the dual multipliers is called dual variable

disaggregation. Since the expectation of an optimal solution to (44)–(45) can be put

on hold, the system can be preemptively constructed in such a way that the

algorithm expects a new partition. In particular, Elhallaoui et al. (2010) use a low-

rank incompatibility strategy. In this respect, the disaggregation is heuristic by

design.

6.3.1 Column generation

The pricing step established in IPS is however now available for DCA. Furthermore,

in the context of column generation, the columns of A being unknown and thus

provided by a column generation pricing problem, the transformed matrix �A needs

to be fabricated just the same. Indeed, the reader can verify that the improved

pricing step would optimally solve by column generation (see Desrosiers et al.

(2014)) the following problem, equivalent to (38) for a set partitioning problem

written in standard form:
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max l
s.t. l � cj � p|aj; ½yj� 8j 2 I;P

‘2Ri
p‘ ¼ wi; 8i 2 R:

ð46Þ

In SPP formulations of vehicle routing problems, the column generation pricing

problem is a constrained shortest path. Since �A carries the information about the

chosen partition fR; Sg, modifying the constrained shortest path generator to ac-

count for this assumed partition effectively lightens its computational burden.

Coined Bi-dynamic constraint aggregation (BDCA), this strategy is accounted for in

the second revision of DCA, see Elhallaoui et al. (2008). While the idea of trans-

ferring the partition information might seem intuitive, the content of the latter paper

is hardly summarizable in a few lines. We therefore insist on the former idea rather

than this one successful application.

6.4 DCA algorithm

Figure 7 presents the algorithm for DCA. Let us concentrate on the modifications

brought to Steps 3–5. The dual variable disaggregation replaces the pricing problem

in Step 3b. Since the latter no longer provides an improving direction, Step 4 is

skipped altogether. In Step 5, we move on directly to the column partition update.

The small selection of incompatible variables I0 � I accompanies the column set F

in Step 1 to create a new row partition.

6.5 Maintaining integrality

In SPP, wishful thinking unites with practicality. Indeed, the binary structure of the

technological constraints is highly prejudicial to identical appearances in AF

represented by positive variables. Recall the three proposed examples to support this

claim. In fact, when the solution is binary, the master problem of DCA is the same

as in IPS. Furthermore, the nature of the pricing problem is such that it identifies

convex combination containing few number of variables. Researchers such as

Zaghrouti et al. (2014) rapidly turned a keen eye on this feature in an effort to

maintain the integrality throughout the resolution process. It is known as integral

simplex using decomposition (ISUD).

It amounts to verifying that the solution of the pricing problem, finally

recuperated from IPS, yields an improved binary solution, rejecting the associated

direction otherwise. In this respect, the binary restriction is transferred to the

1 Generic basis T, transformation T−1, row partition {R, R̄} of Λr ;
2 Compatibility with the row partition {R, R̄} of Λr <optional>;

3a Restricted master problem: solve RMPF C to optimality <optional goto Step 5>;
3b Fetch a subset I ⊆ I from the dual variable disaggregation;
4 Skip the exchange mechanism;
5 Update the column partition {F, L, U} and goto Step 1;

Fig. 7 DCA algorithmic steps
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pricing problem, yet it is only used on a needed basis. Of course, the additional

work imposed de facto on the pricing problem makes it more difficult to solve but

if an optimal binary solution is obtained, it means the elimination of the branch-

and-bound requirement. That is to say that when we aim to maintain integrality in

the resolution process, it makes it hard not to endorse DCA’s strategy. The latter

exploits a fast partition scheme which works out exactly when the solution is

binary and compatibility is easy to verify without the need of an inverse.

6.6 Computational results for DCA

For the aforementioned VCS problems with some 2,000 constraints together with

average degeneracy levels between 40 and 50 %, the combination of these ideas

within GENCOL, a column generation software system, allows a reduction of

solution times by factors of 50 to 100 (4.86 DCA � 4.38 BDCA � 4.53

MPDCA). The improvement factors are compounded as the strategies mix well

together. DCA is the original version which is improved upon when the partition

information is exploited in the pricing problem for generating negative reduced

cost columns. Firstly with the modified constrained shortest path problem

(BDCA) and secondly with the use of a low-rank incompatibility strategy

(MPDCA).

To overcome degeneracy encountered during the resolution of the restricted

master problem, Benchimol et al. (2012) propose a stabilized DCA (SDCA) that

incorporates the above mentioned DCA into the dual variable stabilization (DVS)

method of Oukil et al. (2007). The rationale behind this combination is that DCA

reduces the primal space whereas DVS acts in the dual space. Combining both thus

allows to fight degeneracy from primal and dual perspectives simultaneously. This

method is again designed for solving the linear relaxation of set partitioning type

models only. The computational results obtained on randomly generated instances

of the multi-depot vehicle scheduling problem show that the performance of SDCA

is not affected by the level of degeneracy and that it can reduce the average

computational time of the master problem by a factor of up to 7 with respect to

DVS. While this is not a direct comparison with DCA, the reduction factor would be

even greater. Indeed, many instances solved by DVS could not be solved by DCA

alone.

While DCA is implemented in a column generation context, ISUD is still in the

early phase and applies only to known columns. The latest work of Rosat et al.

(2014) shows that the pricing problem can be modified with relatively simple cuts

when directions are rejected. These cuts have a major impact on the mean

optimality gap dropping to 0.21 % on some aircrew scheduling problems from

33.92 % in the first ISUD paper.
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7 Positive edge

The identification of variables compatible with the row set R requires the

computation of the transformed matrix �A0
ZN ¼ T�1

Z A0
ZN , where

T�1
Z :¼ �M Im�r½ �. For large-scale problems, this can be time consuming. To

overcome this situation, Raymond et al. (2010a) propose the Positive Edge rule. The

latter exploits a creative stochastic argument which in turn allows the use of matrix

multiplication rules to reduce the computational penalty. PE allows to determine

whether a variable yj; j 2 N; is compatible or not without explicitly computing

vector �aZj ¼ T�1
Z aj. It is based on the observations put forth in Sect. 7.1. Its

statement is unveiled in Sect. 7.2 which also discusses its scope. Computational

results are made available in Sect. 7.3.

7.1 Observations

Recall that if aj is compatible, then �aZj ¼ 0. Hence, for any vector v 2 R
m�r, we

must have v|�aZj ¼ 0. Otherwise, �aZj 6¼ 0 and

v|�aZj ¼ 0 if and only if v ? �aZj; ð47Þ

that is, if and only if v and �aZj are orthogonal. Intuitively, this has a probability of

zero for a continuous random vector v. Define w| :¼ v|T�1
Z . Then, for any

variable yj; j 2 N,

v|�aZj ¼ v|T�1
Z aj ¼ w|aj: ð48Þ

The expression (48) is similar to c>B �aj ¼ p>aj in the computation of the reduced cost

of variable xj, where p is the vector of dual variables associated with constraint

set Ax ¼ b.
Computer architecture obliges, the continuous support is traded for a discrete one

thus rendering the orthogonal probability to a nonzero value, although shown to be

very small by Raymond et al. (2010a). We skip the proof and present only the

random vector construction whose elements answer to the following definition.

Definition 3 Within the specifications of a computer with 32-bit words, a nonzero

rational number F 2 Q0 with a discrete distribution SEM32 is a single precision

floating-point number where the sign bit S, exponent E, and mantissa M are

independent and follow the discrete uniform distributions S�U½0; 1�,
E�U½64; 191�, and M�U½0; 223 � 1�.

The random distribution SEM32 is symmetric around a zero mean (lF ¼ 0) with

a huge dispersion, its standard deviation being rF [ 260Towhidi et al. (2014). The

random vector v 2 Q
m�r
0 is such that all m� r components are independent and

identically distributed SEM32.
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7.2 PE rule

Within the scope of IPS, PE is a compatibility test which identifies nondegenerate

improving pivots. It is a statistical test whereby the null hypothesis assumes the

vector a is incompatible until sufficient evidence is provided to conclude otherwise.

On a more abstract level, PE is a membership test. In a linear algebra framework, PE

indeed amounts to stochastically testing whether a given vector belongs to a

subspace. Two types of error may surface, the vector a is assumed compatible but it

is not or the vector is assumed incompatible when it is.

7.2.1 Positive edge rule

Let v 2 Q
m�r
0 be a random SEM32 vector. A vector a 2 R

m is considered

compatible with vector subspace VðKrÞ if w|aj ¼ 0.

Since the operation amounts to a dot product, this means that a compatible

variable is recognized in OðmÞ time using the original vector aj. Researchers

suggested to first consider compatible variables. Indeed, since these variables exist

in the original formulation, their identification can benefit both the pricing step in

IPS as well as provide additional information for pivot-selection rules in PS. As

such, we believe the foremost purpose of PE is the identification of compatible

variables.

With respect to IPS, the pricing problem over compatible variables reduces to

minj2C ~dj while that over the incompatible ones is identical to (13) [or (25) for

linear programs in standard form] but with yN replaced by yI . Notice that

considering the set C is solely from a theoretical point of view, while in practice

the compatibility test is only performed for variables with negative reduced costs or

a subset of them.

PE has also been tested independently of IPS, that is, by selecting entering

variables in PS among the compatible set in priority. We provide details in the

computational results below.

7.3 Computational results for PE

The proof of concept is provided in Raymond et al. (2010a) by using two external

procedures within CPLEX’s black box environment. A direct implementation in

COIN-OR’s CLP, where it has been combined with the Devex pricing criterion, is

presented in Towhidi et al. (2014). The proposed implementation uses a two-

dimensional rule: for a variable xj; j 2 N, the first dimension computes the reduced

cost �cj ¼ cj � p|aj, whereas the second evaluates w|aj. PE identifies Cw ¼ fj 2
Njw|aj ¼ 0g and Iw ¼ fj 2 Njw|aj 6¼ 0g. Let �cjH ; jH 2 Cw [ Iw, be the smallest

reduced cost and �cjw , jw 2 Cw, be the smallest one for a compatible variable. The

current solution is optimal if �cjH � 0. Compatible variables are preferred to enter the

basis except if �cjH is much smaller than �cjw . Given a parameter 0� a\1, the

selection rule is:
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if cjH\0 and cjw\acjH ; then select xjw else xjH : ð49Þ

Tested with a ¼ 0:5 on 32 problems from Mittelmann’s library Koch et al. (2011)

which contains instances with a wide range of degeneracy levels, computational

results show that below a degeneracy level of 25 %, PE is on average neutral while

above this threshold, it reaches an average runtime speedup of 2.72, with a max-

imum of 4.23 on an instance with a 75 % degeneracy level.

8 Conclusions

This paper presents a survey of three recent tools for dealing with primal degeneracy

in linear programming. While DCA appears first in the context of set partitioning

models encountered in many routing and scheduling formulations solved by branch-

and-price, IPS extends the concept to linear programs in general. Both methods

partition the set of constraints in two parts, at every iteration, based on the values

taken by the basic variables. This can be seen as a dynamic application of the

Dantzig–Wolfe decomposition principle.

More specifically in IPS, one part of the constraints appears in the pricing

problem as a homogeneous linear system (together with nonnegative variables)

while the other part (together with the bound intervals on the variables) is used in

the master problem to complete the exchange mechanism from one feasible solution

to the next. PE adds a compatibility test layer, done in polynomial time, to the

traditional reduced cost pricing of nonbasic variables. That is, it identifies those

entering variables that belong to the current vector subspace and are likely to lead to

nondegenerate pivots, if any. Otherwise, the IPS pricing step identifies a convex

combination of incompatible ones which also ultimately leads to a nondegenerate

pivot until optimality is reached in a finite number of iterations. Computational

results reported from the literature show a large reduction on CPU times attributed

to the diminution of degenerate pivots.

This paper also unifies IPS and DCA through a new interpretation in terms of the

usage of two different subspace bases spanning the columns of the master problem.

On the one hand, the subspace basis of IPS is made of the column vectors associated

with the nondegenerate (or free) basic variables. On the other hand, that in DCA is

derived from a partition of the rows into clusters, such as the one observed in any

integer solution. This subspace basis has the fundamental property that it at least

spans the free variable vectors. Therefore, the dimension of the subspace basis in

DCA may be sometimes larger rather than equal to the number of free variables and

this is the reason why some degenerate pivots may occur. As such, while every

iteration of IPS is nondegenerate, DCA may encounter some degenerate pivots.

What does the future look like? While the theory behind IPS is sound and

relatively straightforward, a general implementation is certainly a major concern. It

is however hard to discard the specific structures of different families of LP

problems. In this respect, the reader can think of several specializations of IPS to

well structured problems such as network flows, multi-commodity flows, and linear

relaxations of set partitioning and set covering problems.
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The improved pricing step is the bottleneck of the method and needs to be

handled with a great deal of insight. An efficient all-purpose implementation

requires a significant amount of work and forces us to think about the different

acceleration strategies that were presented herein. To name but a few, we have the

partial pricing, the flexible subspace basis, the Dantzig–Wolfe surrogate variable

environment and of course the infamous compatibility concept. The question that

remains to be answered is whether trigger points for the usage of these ideas can be

automated.

We are also looking at an implementation of these ideas within column

generation, its adaptation to the dual simplex algorithm and to convex optimization,

and its impact on the right-hand side sensitivity analysis, indeed the interpretation of

the dual variables in the context of optimal degenerate solutions. Finally, the design

of a completely efficient Integral Simplex algorithm for the set partitioning problem

is a major goal.
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