Valerio Frascolla, Cristina K. Dominicini, Marcia H. M. Paiva, Gilles Caporossi, Marcelo Antonio Marotta, Moises R. N. Ribeiro, Marcelo E. V. Segatto, Magnos Martinello, Maxwell E. Monteiro et Cristiano B. Both
Article de revue (2019)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (440kB) |
Abstract
At the verge of the launch of the first commercial fifth generation (5G) system, trends in wireless and optical networks are proceeding toward increasingly dense deployments, supporting resilient interconnection for applications that carry higher and higher capacity and tighter latency requirements. These developments put increasing pressure on network backhaul and drive the need for a re-examination of traditional backhaul topologies. Challenges of impending networks cannot be tackled by star and ring approaches due to their lack of intrinsic survivability and resilience properties, respectively. In support of this re-examination, we propose a backhaul topology design method that formulates the topology optimization as a graph optimization problem by capturing both the objective and constraints of optimization in graph invariants. Our graph theoretic approach leverages well studied mathematical techniques to provide a more systematic alternative to traditional approaches to backhaul design. Specifically, herein, we optimize over some known graph invariants, such as maximum node degree, topology diameter, average distance, and edge betweenness, as well as over a new invariant called node Wiener impact, to achieve baseline backhaul topologies that match the needs for resilient future wireless and optical networks.
Mots clés
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2521 Télécommunications mobiles et personnelles |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | European Union’s Horizon 2020 for research, technological development, and demonstration, Brazilian Ministry of Science, Technology and Innovation (MCTI) through RNP and CTIC, CNPq, FAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) |
Numéro de subvention: | 688941, Finance Code 001 |
URL de PolyPublie: | https://publications.polymtl.ca/10633/ |
Titre de la revue: | Applied Sciences (vol. 9, no 1) |
Maison d'édition: | MDPI |
DOI: | 10.3390/app9010136 |
URL officielle: | https://doi.org/10.3390/app9010136 |
Date du dépôt: | 01 mars 2023 15:22 |
Dernière modification: | 04 déc. 2024 19:34 |
Citer en APA 7: | Frascolla, V., Dominicini, C. K., Paiva, M. H. M., Caporossi, G., Marotta, M. A., Ribeiro, M. R. N., Segatto, M. E. V., Martinello, M., Monteiro, M. E., & Both, C. B. (2019). Optimizing C-RAN Backhaul Topologies: A Resilience-Oriented Approach Using Graph Invariants. Applied Sciences, 9(1), 136 (17 pages). https://doi.org/10.3390/app9010136 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions