Hamid Dalir, Rouhollah Dermanaki Farahani, Vireya Nhim, Benjamin Samson, Martin Lévesque and Daniel Therriault
Article (2012)
Open Access document in PolyPublie |
|
Open Access to the full text of this document Accepted Version Terms of Use: All rights reserved Download (2MB) |
Abstract
A large number of polyester nanocomposite batches featuring different kinds of nanoclay surface modifiers and up to 6 wt.% nanoclay were manufactured using a solvent-based technique. Montmorillonite platelets modified with ammonium ions of different chemical architectures were examined in order to study the effect of ammonium ions on the extent of surface reactions with long chain fatty acids. The ammonium montmorillonite was first dispersed and suspended in acetone. This suspension was further esterificated with dotriacontanoic (lacceroic) acid to form high density brushes on the clay surface. This led to achieving higher basal plane spacing of the montmorillonite platelets owing to the reduction of electrostatic interactions holding them. The outcome of the surface esterification was analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The esterificated ammonium modified clays were then mixed by five different mixing strategies based on the use of a three-roll mill mixer (TRM) and/or ultrasonication (US) in order to obtain the desired polyester-nanoclay dispersion, intercalation, and exfoliation. The dispersion states of the modified nanoclay in polymer were characterized from XRD, scanning electron microscopy (SEM), and low and high magnification transmission electron microscopy (TEM). Mechanical, thermal and barrier properties of the resulting composites were experimentally characterized. The Mori-Tanaka method along with an orientation distribution function was used to verify the experimental effective stiffness of the polyester nanocomposite systems. The aspect ratio of nanoclays and their level of intercalation and/or exfoliation after mixing were also confirmed by the comparison of the experimental diffusivity results with those of Fick's diffusion model. Systems having 4 and 6 wt.% esterificated ammonium nanoclay and prepared according to a combined TRM/US mixing procedure showed optimal performance with balanced properties and processing ease, thereby showing potential for use in automotive, transportation and packaging industry.
Uncontrolled Keywords
Clay, Diffusion, Nanocomposites, Organic polymers, Organic reactions
Subjects: |
2000 Materials science and technology > 2001 Materials structure, properties and testing 2000 Materials science and technology > 2002 Materials processing/fabrication 2000 Materials science and technology > 2004 Polymers and coatings |
---|---|
Department: | Department of Mechanical Engineering |
Research Center: | CREPEC - Center for Applied Research on Polymers and Composites |
Funders: | CRSNG/NSERC |
PolyPublie URL: | https://publications.polymtl.ca/10385/ |
Journal Title: | Langmuir (vol. 28, no. 1) |
Publisher: | ACS |
DOI: | 10.1021/la203331h |
Official URL: | https://doi.org/10.1021/la203331h |
Date Deposited: | 07 Jul 2022 16:00 |
Last Modified: | 27 Sep 2024 03:55 |
Cite in APA 7: | Dalir, H., Farahani, R. D., Nhim, V., Samson, B., Lévesque, M., & Therriault, D. (2012). Preparation of Highly Exfoliated Polyester–Clay Nanocomposites: Process–Property Correlations. Langmuir, 28(1), 791-803. https://doi.org/10.1021/la203331h |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions