![]() | Monter d'un niveau |
Jamshidi, S., Amirnia, A., Nikanjam, A., Wazed Nafi, K., Khomh, F., & Keivanpour, S. (2025). Self-adaptive cyber defense for sustainable IoT: A DRL-based IDS optimizing security and energy efficiency. Journal of Network and Computer Applications, 104176. Lien externe
Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (août 2025). Deep Reinforcement Learning-Based Intrusion Detection System: Defending Edge Gateways Against Mirai and Gafgyt [Communication écrite]. 12th International Conference on Future Internet of Things and Cloud (FiCloud 2025), Istanbul, Turkiye. Lien externe
Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (juillet 2025). A Dynamic Security Pattern Selection Framework Using Deep Reinforcement Learning [Communication écrite]. International Conference on Software Services Engineering (SSE 2025), Helsinki, Finland. Lien externe
Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (2025). Understanding the impact of IoT security patterns on CPU usage and energy consumption: a dynamic approach for selecting patterns with deep reinforcement learning. International Journal of Information Security, 24(2), 40 pages. Lien externe
Jamshidi, S., Nikanjam, A., Wazed Nafi, K., Khomh, F., & Rasta, R. (2025). Application of deep reinforcement learning for intrusion detection in Internet of Things: A systematic review. Internet of Things, 31, 101531 (29 pages). Lien externe
Jamshidi, S., Wazed Nafi, K., Nikanjam, A., & Khomh, F. (2025). Evaluating machine learning-driven intrusion detection systems in IoT: Performance and energy consumption. Computers & Industrial Engineering, 204, 111103 (17 pages). Lien externe
Majdinasab, V., Nikanjam, A., & Khomh, F. (2025). DeepCodeProbe: Evaluating Code Representation Quality in Models Trained on Code. Empirical Software Engineering, 30(6), 169 (53 pages). Lien externe
Majidi, F., Khomh, F., Li, H., & Nikanjam, A. (2025). An efficient model maintenance approach for MLOps. Empirical Software Engineering, 31(1), 48 pages. Lien externe
Nouwou Mindom, P. S., Da Silva, L. M. P., Nikanjam, A., & Khomh, F. (2025). Continuously Learning Bug Locations. ACM Transactions on Software Engineering and Methodology. Lien externe
Tambon, F., Moradidakhel, A., Nikanjam, A., Khomh, F., Desmarais, M. C., & Antoniol, G. (2025). Bugs in large language models generated code: an empirical study. Empirical Software Engineering, 30(3), 48 pages. Lien externe
Tambon, F., Nikanjam, A., Zid, C., Khomh, F., & Antoniol, G. (2025). TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models. ACM Transactions on Software Engineering and Methodology. Lien externe