Monter d'un niveau |
Ghavami, S., Alipour, Z., Naseri, H., Jahanbakhsh, H., & Karimi, M. M. (2023). A New Ensemble Prediction Method for Reclaimed Asphalt Pavement (RAP) Mixtures Containing Different Constituents. Buildings, 13(7), 30 pages. Disponible
Naseri, H., Shokoohi, M., Jahanbakhsh, H., Karimi, M. M., & Waygood, O. (2023). Novel Soft-Computing Approach to Better Predict Flexible Pavement Roughness. Transportation Research Record, 2677(10), 246-259. Lien externe
Naseri, H., Waygood, O., Wang, B., & Patterson, Z. (2023). Interpretable Machine Learning Approach to Predicting Electric Vehicle Buying Decisions. Transportation Research Record, 14 pages. Lien externe
Sun, Y., Dong, Y., Wang, D., Waygood, O., Naseri, H., & Nishii, K. (2023). Correlation between travel experiences and post-COVID outbound tourism intention: a case study from China. Journal of Zhejiang University-SCIENCE A, 14 pages. Lien externe
Wang, B., Waygood, O., Ji, X., Naseri, H., Loiselle, A. L., Daziano, R. A., Patterson, Z., & Feinberg, M. (2023). How to effectively communicate about greenhouse gas emissions with different populations. Environmental Science & Policy, 147, 29-43. Lien externe
Dong, Y., Sun, Y., Wang, D., Waygood, O., Naseri, H., & Jiang, Y. (décembre 2023). How daily mobility and public transport use affect travel satisfaction : evidence from Hangzhou, China [Communication écrite]. 27th International Conference of Hong Kong Society for Transportation Studies: Transport and Equity (HKSTS 2023), Hong Kong. Non disponible
Naseri, H. (2023). Optimizing Machine Learning Techniques to Better Understand Sustainability in Transportation Planning [Thèse de doctorat, Polytechnique Montréal]. Accès restreint