![]() | Monter d'un niveau |
Contardo, C., & Hertz, A. (2021). An exact algorithm for a class of geometric set-cover problems. Discrete Applied Mathematics, 300, 25-35. Lien externe
Hertz, A., & Ries, B. (2021). Graph colouring variations. Dans Beineke, L. W., Golumbic, M. C., & Wilson, R. J. (édit.), Topics in Algorithmic Graph Theory (p. 33-51). Lien externe
Hertz, A., Hertz, A., & Mélot, H. (2021). Using Graph Theory to Derive Inequalities for the Bell Numbers. Journal of Integer Sequences, 24(10), 21.10.6 (19 pages). Lien externe
Hertz, A., Hertz, A., & Mélot, H. (2021). Using graph theory to derive inequalities for the Bell numbers. (Rapport technique n° G-2021-06). Lien externe
Hertz, A., Kuflik, T., & Tuval, N. (2021). Resolving sets and integer programs for recommender systems. Journal of Global Optimization, 81(1), 153-178. Lien externe
Hertz, A., Mélot, H., Bonte, S., & Devillez, G. (2021). Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph. (Rapport technique n° G-2021-25). Lien externe
Hertz, A., Mélot, H., Bonte, S., Devillez, G., & Hauweele, P. (2021). Upper bounds on the average number of colors in the non-equivalent colorings of a graph. (Rapport technique n° G-2021-28). Lien externe
Randel, R., Aloise, D., & Hertz, A. (2021). Exploring dual information in distance metric learning for clustering. (Rapport technique n° G-2021-32). Lien externe
Randel, R., Aloise, D., Blanchard, S. J., & Hertz, A. (2021). A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering. Data Mining and Knowledge Discovery, 35(6), 2341-2368. Disponible