<  Retour au portail Polytechnique Montréal

Documents publiés en "2018"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Aller à : A | B | D | G | R | T
Nombre de documents: 16

A

Alarie, S., Amaioua, N., Audet, C., Le Digabel, S., & Leclaire, L.-A. (2018). Selection of variables in parallel space decomposition for the mesh adaptive. (Rapport technique n° G-2018-38). Lien externe

Amaioua, N., Audet, C., Conn, A. R., & Le Digabel, S. (2018). Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm. European Journal of Operational Research, 268(1), 13-24. Lien externe

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2018). Performance indicators in multiobjective optimization. (Rapport technique n° G-2018-90). Lien externe

Audet, C., Conn, A. R., Le Digabel, S., & Peyrega, M. (2018). A progressive barrier derivative-free trust-region algorithm for constrained optimization. Computational Optimization and Applications, 71(2), 307-329. Lien externe

Audet, C., Ihaddadene, A., Le Digabel, S., & Tribes, C. (2018). Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm. Optimization Letters, 12(4), 675-689. Lien externe

Audet, C., Kokkolaras, M., Le Digabel, S., & Talgorn, B. (2018). Order-based error for managing ensembles of surrogates in derivative-free optimization. (Rapport technique n° G-2016-36). Lien externe

Audet, C., Kokkolaras, M., Le Digabel, S., & Talgorn, B. (2018). Order-based error for managing ensembles of surrogates in mesh adaptive direct search. Journal of Global Optimization, 70(3), 645-675. Lien externe

Audet, C., Le Digabel, S., & Tribes, C. (2018). The mesh adaptive direct search algorithm for granular and discrete variables. (Rapport technique n° G-2018-16). Lien externe

B

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-Cheap Conic Relaxation for the AC Optimal Power Flow Problem. IEEE Transactions on Power Systems, 33(6), 7181-7188. Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-cheap conic relaxation for the AC optimal power flow problem. (Rapport technique n° G-2018-02). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem. (Rapport technique n° G-2018-76). Lien externe

D

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2018). Balancing realism and complexity: An accurate optimization model for electricity usage in smart homes. (Rapport technique n° G-2018-06). Lien externe

G

Gheribi, A. E., Pelton, A., Belisle, È., Le Digabel, S., & Harvey, J.-P. (2018). On the prediction of low-cost high entropy alloys using new thermodynamic multi-objective criteria. ACTA Materialia, 161, 73-82. Lien externe

R

Rodrigues de Sousa, V. J., Anjos, M. F., & Le Digabel, S. (2018). Computational study of valid inequalities for the maximum k-cut problem. Annals of Operations Research, 265(1), 5-27. Lien externe

Rodrigues de Sousa, V., Anjos, M. F., & Le Digabel, S. (2018). Improving the linear relaxation of maximum k-cut with semidefinite-based constraints. (Rapport technique n° G-2018-26). Lien externe

T

Talgorn, B., Audet, C., Le Digabel, S., & Kokkolaras, M. (2018). Locally weighted regression models for surrogate-assisted design optimization. Optimization and Engineering, 19(1), 213-238. Lien externe

Liste produite: Fri Dec 5 03:06:18 2025 EST.