![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Bengio, Y., Gupta, P., Maharaj, T., Rahaman, N., Weiss, M., Deleu, T., Muller, E., Qu, M., Schmidt, V., St-Charles, P.-L., Alsdurf, H., Bilanuik, O., Buckeridge, D., Caron, G. M., Carrier, P.-L., Ghosn, J., Ortiz-Gagne, S., Pal, C., Rish, I., ... Williams, A. (2021, May). Predicting infectiousness for proactive contact tracing [Paper]. 9th International Conference on Learning Representations (ICLR 2021), Vienne, Austria. Unavailable
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2019). Online Mutual Foreground Segmentation for Multispectral Stereo Videos. International Journal of Computer Vision, 127(8), 1044-1062. External link
St-Charles, P.-L. (2018). Segmentation mutuelle d'objets d'intérêt dans des séquences d'images stéréo multispectrales [Ph.D. thesis, École Polytechnique de Montréal]. Available
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2016, June). Fast Image Gradients Using Binary Feature Convolutions [Paper]. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2016), Las Vegas, Nevada. External link
Nguyen, D.-L., St-Charles, P.-L., & Bilodeau, G.-A. (2016, June). Non-planar Infrared-Visible Registration for Uncalibrated Stereo Pairs [Paper]. 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2016), Las Vegas, Nevada. External link
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2016). Universal Background Subtraction Using Word Consensus Models. IEEE Transactions on Image Processing, 25(10), 4768-4781. External link
Chen, G., St-Charles, P.-L., Bouachir, W., Bilodeau, G.-A., & Bergevin, R. (2015, September). Reproducible evaluation of Pan-Tilt-Zoom tracking [Paper]. IEEE International Conference on Image Processing (ICIP 2015), Québec City, QC, Canada. External link
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2015, January). A self-adjusting approach to change detection based on background word consensus [Paper]. 15th IEEE Winter Conference on Applications of Computer Vision (WACV 2015), Waikoloa, HI, United states. External link
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2015). SuBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Transactions on Image Processing, 24(1), 359-373. External link
St-Charles, P.-L., Bilodeau, G.-A., & Bergevin, R. (2014, June). Flexible background subtraction with self-balanced local sensitivity [Paper]. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2014), Columbus, OH, United states. External link
St-Charles, P.-L., & Bilodeau, G.-A. (2014, March). Improving background subtraction using Local Binary Similarity Patterns [Paper]. IEEE Winter Conference on Applications of Computer Vision (WACV 2014), Steamboat Springs, Col., USA. External link
Bilodeau, G.-A., Torabi, A., St-Charles, P.-L., & Riahi, D. (2014). Thermal-visible registration of human silhouettes: A similarity measure performance evaluation. Infrared Physics & Technology, 64, 79-86. External link