![]() | Up a level |
Dessemond, C., Soucy, G., Harvey, J.-P., & Ouzilleau, P. (2020). Phase Transitions in the α-γ-β Spodumene Thermodynamic System and Impact of γ-Spodumene on the Efficiency of Lithium Extraction by Acid Leaching. Minerals, 10(6), 23 pages. External link
Ouzilleau, P., Gheribi, A., Chartrand, P., Soucy, G., & Monthioux, M. (2019). Why some carbons may or may not graphitize? The point of view of thermodynamics. Carbon, 149, 419-435. Available
Ouzilleau, P. (2019). Développement thermodynamique de la graphitation pour la réduction des émissions primaires de CO2 et de CO lors de l'électrolyse de l'aluminium [Ph.D. thesis, Polytechnique Montréal]. Available
Ouzilleau, P., Gheribi, A. E., & Chartrand, P. (2018). Prediction of CO2/CO formation from the (primary) anode process in aluminium electrolysis using an electrothermodynamic model (for coke crystallites). Electrochimica Acta, 259, 916-929. External link
Ouzilleau, P., Gheribi, A. E., & Chartrand, P. (2018). Thermodynamic description of graphitizable carbons and the irreversible graphitization process. Carbon, 132, 556-564. External link
Ouzilleau, P., Gheribi, A. E., & Chartrand, P. (2016). The graphitization temperature threshold analyzed through a second-order structural transformation. Carbon, 109, 896-908. External link
Ma, Z., Ouzilleau, P., Trevisanut, C., Neagoe, C., Lotfi, S., Boffito, D. C., & Patience, G. (2016). Partial oxidation of methane to syngas over Pt/Rh/MgO catalyst supported on FeCralloy woven fibre. Canadian Journal of Chemical Engineering, 94(4), 642-649. External link
Dalaker, H., Ouzilleau, P., & Chartrand, P. (2015, March). The application of a recent thermodynamic model for coke crystallites: Chemisorption of methyl groups, decomposition of natural gas, and the reduction of metal oxides [Paper]. 6th International Symposium on High-Temperature Metallurgical Processing, Orlando, FL, United states. External link
Ouzilleau, P., Gheribi, A. E., Eriksson, G., Lindberg, D. K., & Chartrand, P. (2015). A size-dependent thermodynamic model for coke crystallites: The carbon-hydrogen system up to 2500 K. Carbon, 85, 99-118. External link
Ouzilleau, P., Gheribi, A. E., & Chartrand, P. (2015). A Size-Dependent Thermodynamic Model for the Carbon/Hydrogen/Sulfur System in Coke Crystallites: Application to the Production of Pre-Baked Carbon Anodes. In Light Metals 2015 (1067-1072). External link
Ouzilleau, P. (2014). Développement d'un modèle thermodynamique pour les cristallites de coke : application aux systèmes carbone-hydrogène et carbone-soufre [Master's thesis, École Polytechnique de Montréal]. Available
Ouzilleau, P., Robelin, C., & Chartrand, P. (2012). A Density Model Based on the Modified Quasichemical Model and Applied to the (NaCl + KCl + ZnCl₂) Liquid. Journal of Chemical Thermodynamics, 47, 171-176. External link