<  Back to the Polytechnique Montréal portal

Items where Author is "Lamothe, Maxime"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: G | K | L | M | Q | R | W | Z
Number of items: 21.

G

Ghadesi, A., Lamothe, M., & Li, H. (2024). What causes exceptions in machine learning applications? Mining machine learning-related stack traces on Stack Overflow. Empirical Software Engineering, 29, 107 (37 pages). External link

Gallaba, K., Lamothe, M., & McIntosh, S. (2022, May). Lessons from eight years of operational data from a continuous integration service: An exploratory case study of CircleCI [Paper]. IEEE/ACM 44th International Conference on Software Engineering (ICSE 2022), Pittsburgh, PA, USA. External link

Gauthier, I. X., Lamothe, M., Mussbacher, G., & McIntosh, S. (2021, November). Is Historical Data an Appropriate Benchmark for Reviewer Recommendation Systems? : AA Case Study of the Gerrit Community [Paper]. 36th IEEE/ACM International Conference on Automated Software Engineering (ASE 2021), Melbourne, Australia. External link

K

Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Characterizing the Prevalence Distribution and Duration of Stale Reviewer Recommendations. IEEE Transactions on Software Engineering, 3422369 (14 pages). External link

Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Replication Package and Online Appendix for "Characterizing the impact, distribution, and duration of stale reviewer recommendations" [Dataset]. External link

Kazemi, F., Lamothe, M., & McIntosh, S. (2022). Dataset of the study "Exploring the Notion of Risk in Reviewer Recommendation" [Dataset]. External link

Kazemi, F., Lamothe, M., & McIntosh, S. (2022, October). Exploring the Notion of Risk in Code Reviewer Recommendation [Paper]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. External link

L

Lamothe, M., Shang, W., & Chen, T.-H. P. (2022). A3: Assisting Android API Migrations Using Code Examples. IEEE Transactions on Software Engineering, 48(2), 417-431. External link

Lamothe, M., Li, H., & Shang, W. (2022). Assisting Example-based API Misuse Detection via Complementary Artificial Examples. IEEE Transactions on Software Engineering, 48(9), 3410-3422. External link

Lamothe, M., Gueheneuc, Y. G., & Shang, W. (2021). A Systematic Review of API Evolution Literature. ACM Computing Surveys, 54(8), 1-36. External link

Lamothe, M. (2020, June). Bridging the divide between API users and API developers by mining public code repositories [Paper]. 42nd ACM/IEEE International Conference on Software Engineering, Seoul, South Korea. External link

Lamothe, M., & Shang, W. (2020, June). When APIs are intentionally bypassed [Paper]. 42nd ACM/IEEE International Conference on Software Engineering, Seoul, South Korea. External link

Lamothe, M., & Shang, W. (2018, May). Exploring the use of automated API migrating techniques in practice [Paper]. 15th International Conference on Mining Software Repositories, Gothenburg, Sweden. External link

M

Meidani, M., Lamothe, M., & McIntosh, S. (2023). Assessing the exposure of software changes: The DiPiDi approach. Empirical Software Engineering, 28(2), 36 pages. External link

Q

Quach, S., Lamothe, M., Kamei, Y., & Shang, W. (2021). An empirical study on the use of SZZ for identifying inducing changes of non-functional bugs. Empirical Software Engineering, 26(4). External link

Quach, S., Lamothe, M., Adams, B., Kamei, Y., & Shang, W. (2021). Evaluating the impact of falsely detected performance bug-inducing changes in JIT models. Empirical Software Engineering, 26(5). External link

R

Robillard, M. P., Arya, D. M., Ernst, N. A., Guo, J. L. C., Lamothe, M., Nassif, M., Novielli, N., Serebrenik, A., Steinmacher, I., & Stol, K.-J. (2024). Communicating Study Design Trade-offs in Software Engineering. ACM Transactions on Software Engineering and Methodology, 33(5), 112 (10 pages). External link

W

Wen, R., Lamothe, M., & McIntosh, S. (2022, May). How does code reviewing feedback evolve?: A longitudinal study at Dell EMC [Paper]. IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE 2022), Pittsburgh, PA, USA. External link

Z

Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2024). How Trustworthy is Your CI Accelerator? A Comparison of the Trustworthiness of CI Acceleration Products. IEEE Software, 3395616 (6 pages). External link

Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2024, April). A Mutation-Guided Assessment of Acceleration Approaches for Continuous Integration: An Empirical Study of YourBase [Paper]. 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR 2024), Lisbon, Portugal. External link

Zhang, H., Tang, Y., Lamothe, M., Li, H., & Shang, W. (2022). Studying logging practice in test code. Empirical Software Engineering, 27(4), 83 (45 pages). External link

List generated on: Thu Sep 19 07:47:36 2024 EDT