<  Back to the Polytechnique Montréal portal

Items where Author is "Dolz, José"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: A | B | D | G | M | V
Number of items: 15.

A

Adiga Vasudeva, S., Dolz, J., & Lombaert, H. (2024). Anatomically-aware uncertainty for semi-supervised image segmentation. Medical Image Analysis, 91, 103011 (10 pages). External link

Adiga V., S., Dolz, J., & Lombaert, H. (2022). Attention-Based Dynamic Subspace Learners for Medical Image Analysis. IEEE Journal of Biomedical and Health Informatics, 26(9), 4599-4610. External link

Adiga Vasudeva, S., Dolz, J., & Lombaert, H. (2022, September). Leveraging Labeling Representations in Uncertainty-Based Semi-supervised Segmentation [Paper]. 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Singapore. External link

B

Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2022). Source-free domain adaptation for image segmentation. Medical Image Analysis, 82, 102617 (12 pages). External link

Bateson, M., Dolz, J., Kervadec, H., Lombaert, H., & Ben Ayed, I. (2021). Constrained Domain Adaptation for Image Segmentation. IEEE Transactions on Medical Imaging, 40(7), 1875-1887. External link

Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2020, October). Source-Relaxed Domain Adaptation for Image Segmentation [Paper]. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru. External link

Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2019, October). Constrained Domain Adaptation for Segmentation [Paper]. 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen, China. External link

D

Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., & Ben Ayed, I. (2019). HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation. IEEE Transactions on Medical Imaging, 38(5), 1116-1126. External link

G

Galdrán, A., Anjos, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2022). State-of-the-art retinal vessel segmentation with minimalistic models. Scientific Reports, 12(1), 6174 (13 pages). Available

Galdrán, A., Dolz, J., Chakor, H., Lombaert, H., & Ben Ayed, I. (2020, October). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images [Paper]. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru. External link

Galdrán, A., Chelbi, J., Kobi, R., Dolz, J., Lombaert, H., ben Ayed, I., & Chakor, H. (2020). Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Translational Vision Science & Technology, 9(2), 34 (8 pages). External link

M

Murugesan, B., Vasudeva, S. A., Liu, B., Lombaert, H., Ayed, I. B., & Dolz, J. (2025). Neighbor-aware calibration of segmentation networks with penalty-based constraints. Medical Image Analysis, 103501-103501. External link

Murugesan, B., Adiga Vasudeva, S., Liu, B., Lombaert, H., Ben Ayed, I., & Dolz, J. (2023, October). Trust Your Neighbours: Penalty-Based Constraints for Model Calibration [Paper]. 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), Vancouver, Canada. External link

V

Vasudeva, S. A., Dolz, J., & Lombaert, H. (2025). GeoLS: an Intensity-based, Geodesic Soft Labeling for Image Segmentation. The Journal of Machine Learning for Biomedical Imaging, 2(April 2025), 120-134. External link

Vasudeva, S. A., Dolz, J., & Lombaert, H. (2023, July). GeoLS: Geodesic Label Smoothing for Image Segmentation [Paper]. Medical Imaging with Deep Learning (MIDL 2023), Nashville, TN, USA. Published in Proceedings of Machine Learning Research, 227. External link

List generated on: Tue Apr 29 06:26:51 2025 EDT