Mémoire de maîtrise (2012)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Résumé
Le but de ce travail est de déterminer la distribution de puissance et les paramètres thermohydrauliques pour un réacteur CANDU SCWR, par un couplage neutronique-thermohydraulique. La distribution de puissance obtenue a un facteur de puissance de 1.4. Chaque canal a un maximum de puissance à la troisième grappe (à partir de l'entrée du canal), et cette valeur maximale augmente avec la puissance du canal. Le coefficient de transfère thermique et la chaleure spécifique atteingnent leur valeur maximale à la même position dans un canal, et cette position se déplace vers l'entrée du canal en raison d'une augmentation de puissance de canal. La température de sortie du caloporteur augmente avec la puissance du canal, tandis que la pression et la densité de sortie diminuent avec l'augmentation de la puissance du canal. L'augmentation de la puissance du canal résulte aussi en des températures élevées pour le combustible et la gaine. Le facteur de multiplication et les paramètres thermohydrauliques oscillent autours de leurs valeurs à la convergence.
Abstract
In order to implement new nuclear technologies as a solution to the growing demand for energy, 10 countries agreed on a framework for international cooperation in 2002, to form the Generation IV International Forum (GIF). The goal of the GIF is to design the next generation of nuclear reactors that would be cost effective and would enhance safety. This forum has proposed several types of Generation IV reactors including the SupercriticalWater- Cooled Reactor (SCWR). The SCWR comes in two main configurations: pressure vessel SCWR and pressure tube SCWR (PT-SCWR). In this study, the CANDU SCWR (a PTSCWR) is considered. This reactor is oriented vertically and contains 336 channels with a length of 5 m. The target coolant inlet and outlet temperatures are 350 Celsius and 625 Celsius, respectively. The coolant flows downwards, and the reactor power is 2540 MWth. Various fuel designs have been considered in order not to exceed the linear element rating. However, the dependency between the core power and thermalhydraulics parameters results in the necessity to use a neutronics/thermalhydaulics coupling scheme to determine the core power and the thermalhydraulics parameters. The core power obtained has a power peaking factor of 1.4. The bundle power distribution for all channels has a peak at the third bundle from the inlet, but the value of this peak increases with the channel power. The heat-transfer coefficient and the specific-heat capacity have a peak at the same location in a channel, and this location shifts toward the inlet as the channel power increases. The exit coolant temperature increases with the channel power, while the exit coolant density and pressure decrease with the channel power. Also, higher channel powers lead to higher fuel and cladding temperatures. Moreover, as the coupling method is applied, the effective multiplication factor and the values of thermalhydaulics parameters oscillate as they converge.
Département: | Département de génie physique |
---|---|
Programme: | Génie énergétique |
Directeurs ou directrices: | Guy Marleau |
URL de PolyPublie: | https://publications.polymtl.ca/946/ |
Université/École: | École Polytechnique de Montréal |
Date du dépôt: | 14 nov. 2012 15:10 |
Dernière modification: | 01 oct. 2024 02:11 |
Citer en APA 7: | Adouki, P. (2012). Neutronics-Thermalhydraulics Coupling in a CANDU SCWR [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/946/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements