UNIVERSITÉ DE MONTRÉAL

NEUTRONICS-THERMALHYDRAULICS COUPLING IN A CANDU SCWR

PIERRE ADOUKI
DÉPARTEMENT DE GÉNIE PHYSIQUE
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES
(GÉNIE ÉNERGÉTIQUE)
AOÛT 2012

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

NEUTRONICS-THERMALHYDRAULICS COUPLING IN A CANDU SCWR

présenté par: ADOUKI Pierre
en vue de l’obtention du diplôme de: Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de:

M. KOCLAS Jean, Ph.D., président.
M. MARLEAU Guy, Ph.D., membre et directeur de recherche.
M. ÉTIENNE Stéphane, Doct., membre.
ACKNOWLEDGMENTS

I would like to thank my research director, Guy Marleau, for allowing me to work on this project. I am grateful for the scientific and the financial support he has provided me with, in order to bring this project to completion. Also, I would like to thank the following individuals for their willingness to answer the various questions that I brought to their attention, even though they were under no obligation to reply to my queries. In alphabetical order, they are:
Matt Edwards, Atomic Energy of Canada Limited
Dave Novog, McMaster University
Jeremy Pencer, Atomic Energy of Canada Limited
Igor Pioro, University of Ontario Institute of Technology
Altan Tatucu, Institut de Génie Nucléaire, École Polytechnique Montréal
**RÉSUMÉ**

Le but de ce travail est de déterminer la distribution de puissance et les paramètres thermohydrauliques pour un réacteur CANDU SCWR, par un couplage neutronique-thermohydraulique. La distribution de puissance obtenue a un facteur de puissance de 1.4. Chaque canal a un maximum de puissance à la troisième grappe (à partir de l’entrée du canal), et cette valeur maximale augmente avec la puissance du canal. Le coefficient de transfère thermique et la chaleur spécifique atteignent leur valeur maximale à la même position dans un canal, et cette position se déplace vers l’entrée du canal en raison d’une augmentation de puissance du canal. La température de sortie du caloporteur augmente avec la puissance du canal, tandis que la pression et la densité de sortie diminuent avec l’augmentation de la puissance du canal. L’augmentation de la puissance du canal résulte aussi en des températures élevées pour le combustible et la gaine. Le facteur de multiplication et les paramètres thermohydrauliques oscillent autour de leurs valeurs à la convergence.
ABSTRACT

In order to implement new nuclear technologies as a solution to the growing demand for energy, 10 countries agreed on a framework for international cooperation in 2002, to form the Generation IV International Forum (GIF). The goal of the GIF is to design the next generation of nuclear reactors that would be cost effective and would enhance safety. This forum has proposed several types of Generation IV reactors including the Supercritical Water-Cooled Reactor (SCWR). The SCWR comes in two main configurations: pressure vessel SCWR and pressure tube SCWR (PT-SCWR). In this study, the CANDU SCWR (a PT-SCWR) is considered. This reactor is oriented vertically and contains 336 channels with a length of 5 m. The target coolant inlet and outlet temperatures are 350 Celsius and 625 Celsius, respectively. The coolant flows downwards, and the reactor power is 2540 MWth. Various fuel designs have been considered in order not to exceed the linear element rating. However, the dependency between the core power and thermalhydraulics parameters results in the necessity to use a neutronics/thermalhydraulics coupling scheme to determine the core power and the thermalhydraulics parameters. The core power obtained has a power peaking factor of 1.4. The bundle power distribution for all channels has a peak at the third bundle from the inlet, but the value of this peak increases with the channel power. The heat-transfer coefficient and the specific-heat capacity have a peak at the same location in a channel, and this location shifts toward the inlet as the channel power increases. The exit coolant temperature increases with the channel power, while the exit coolant density and pressure decrease with the channel power. Also, higher channel powers lead to higher fuel and cladding temperatures. Moreover, as the coupling method is applied, the effective multiplication factor and the values of thermalhydraulics parameters oscillate as they converge.
# TABLE OF CONTENTS

**ACKNOWLEDGMENTS** ................................................................. iii

**RÉSUMÉ** ...................................................................................... iv

**ABSTRACT** .................................................................................. v

**TABLE OF CONTENTS** .............................................................. vi

**LIST OF TABLES** .......................................................................... ix

**LIST OF FIGURES** ......................................................................... x

**LIST OF APPENDICES** ............................................................... xii

**LIST OF ACRONYMS AND ABBREVIATIONS** ............................. xiii

**CHAPTER 1 CANDU SCWR CELL AND REACTOR DATABASE** .... 3

1.1 Cell-model description .......................................................... 3

1.2 Cell neutronics properties ..................................................... 3

1.2.1 Effect of burnup on reactivity ........................................... 7

1.2.2 Effect of the fuel temperature on reactivity ....................... 9

1.2.3 Effect of the coolant temperature on reactivity ................ 9

1.2.4 Effect of the coolant density on reactivity ......................... 12

1.3 Reactor-database generation ................................................. 13

1.4 Reactor-database validation ............................................... 16

**CHAPTER 2 STEADY-STATE ANALYSIS** ...................................... 20

2.1 Reactor-core model .............................................................. 20

2.2 Thermallydraulic and heat-transfer models ......................... 21

2.2.1 Thermallydraulic model ................................................. 22

2.2.2 Heat-transfer model ...................................................... 23

2.3 Reactor-power calculation procedure ................................... 24

2.4 Thermallydraulic calculation procedure ............................... 26

2.5 Description of the neutronics/thermallydraulic coupling procedure 28

2.6 Validation tests for the THERMO module ......................... 30

2.6.1 Test 1 ........................................................................... 30

2.6.2 Test 2 ........................................................................... 30

2.6.3 Test 3 ........................................................................... 32
CHAPTER 3 RESULTS FOR STEADY-STATE ANALYSIS .............................................. 35

3.1 Effective multiplication factor ........................................................................... 35

3.2 Channel-power distribution .............................................................................. 36

3.3 Results for channel 1 ....................................................................................... 38

  3.3.1 Bundle power ............................................................................................... 38

  3.3.2 Specific-heat capacity .................................................................................. 39

  3.3.3 Heat-transfer coefficient ............................................................................. 41

  3.3.4 Coolant temperature .................................................................................. 42

  3.3.5 Coolant density ........................................................................................... 44

  3.3.6 Pressure along the channel ....................................................................... 45

  3.3.7 Fuel and cladding temperatures ................................................................. 47

3.4 Results for channel 5 ....................................................................................... 48

  3.4.1 Bundle power ............................................................................................... 48

  3.4.2 Specific-heat capacity .................................................................................. 49

  3.4.3 Heat-transfer coefficient ............................................................................. 51

  3.4.4 Coolant temperature .................................................................................. 52

  3.4.5 Coolant density ........................................................................................... 54

  3.4.6 Pressure along the channel ....................................................................... 55

  3.4.7 Fuel and cladding temperatures ................................................................. 57

3.5 Results for channel 10 .................................................................................... 58

  3.5.1 Bundle power ............................................................................................... 58

  3.5.2 Specific-heat capacity .................................................................................. 59

  3.5.3 Heat-transfer coefficient ............................................................................. 61

  3.5.4 Coolant temperature .................................................................................. 62

  3.5.5 Coolant density ........................................................................................... 64

  3.5.6 Pressure along the channel ....................................................................... 65

  3.5.7 Fuel and cladding temperatures ................................................................. 67

CHAPTER 4 CONCLUSION ......................................................................................... 68

REFERENCES .......................................................................................................... 69

APPENDICES ........................................................................................................... 71

A.1 Main input file ................................................................................................... 71

A.2 Procedures ........................................................................................................ 76

  A.2.1 Procedure PGeoIns4Z .............................................................................. 76

  A.2.2 Procedure Pmacfix ..................................................................................... 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.3</td>
<td>Procedure MapflInit</td>
<td>81</td>
</tr>
<tr>
<td>B.1</td>
<td>Main input file</td>
<td>99</td>
</tr>
<tr>
<td>B.2</td>
<td>Procedures</td>
<td>101</td>
</tr>
<tr>
<td>B.2.1</td>
<td>Procedure SCWRLib1</td>
<td>101</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Procedure SCWRGeo2D</td>
<td>109</td>
</tr>
<tr>
<td>B.2.3</td>
<td>Procedure SCWRTrack2D</td>
<td>111</td>
</tr>
<tr>
<td>B.2.4</td>
<td>EvolRGB1</td>
<td>112</td>
</tr>
<tr>
<td>C.1</td>
<td>Main input files</td>
<td>117</td>
</tr>
<tr>
<td>C.1.1</td>
<td>File RefG2.x2m</td>
<td>117</td>
</tr>
<tr>
<td>C.1.2</td>
<td>File CFC.x2m</td>
<td>119</td>
</tr>
<tr>
<td>C.1.3</td>
<td>File PerG2BM.x2m</td>
<td>122</td>
</tr>
<tr>
<td>C.1.4</td>
<td>File PerG2CMB.x2m</td>
<td>124</td>
</tr>
<tr>
<td>C.1.5</td>
<td>File PerG2DM.x2m</td>
<td>127</td>
</tr>
<tr>
<td>C.1.6</td>
<td>File PerG2IF.x2m</td>
<td>131</td>
</tr>
<tr>
<td>C.1.7</td>
<td>File PerG2PM.x2m</td>
<td>134</td>
</tr>
<tr>
<td>C.1.8</td>
<td>File PerPowG2.x2m</td>
<td>137</td>
</tr>
<tr>
<td>C.1.9</td>
<td>File PerG2TC.x2m</td>
<td>140</td>
</tr>
<tr>
<td>C.1.10</td>
<td>File PerG2TF.x2m</td>
<td>143</td>
</tr>
<tr>
<td>C.2</td>
<td>Procedures</td>
<td>146</td>
</tr>
<tr>
<td>C.2.1</td>
<td>Procedure CpoG2.c2m</td>
<td>146</td>
</tr>
<tr>
<td>C.2.2</td>
<td>Procedure EvoG2Per.c2m</td>
<td>148</td>
</tr>
<tr>
<td>C.2.3</td>
<td>Procedure EvoG2Pui.c2m</td>
<td>152</td>
</tr>
<tr>
<td>C.2.4</td>
<td>Procedure EvoG2Ref.c2m</td>
<td>157</td>
</tr>
<tr>
<td>C.2.5</td>
<td>Procedure GEOG2.c2m</td>
<td>161</td>
</tr>
<tr>
<td>C.2.6</td>
<td>Procedure MicG2IAEA.c2m</td>
<td>163</td>
</tr>
</tbody>
</table>
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>CANDU SCWR channel parameters</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Cell composition</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Reference database parameters</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Perturbation database parameters</td>
<td>13</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Database validation (Part 1)</td>
<td>17</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Database validation (Part 2)</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Channel design parameters</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Default local and global parameters for the THERMO: module</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Effective multiplication factor</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 CANDU SCWR cell with 54 fuel elements per bundle ........................................... 5
Figure 1.2 Cell model for self-shielding (top) and flux (bottom) calculations .............................. 6
Figure 1.3 Calculation scheme for the effective multiplication factor ........................................ 8
Figure 1.4 Reactivity as a function of burnup .............................................................................. 9
Figure 1.5 Effect of the fuel temperature on reactivity ................................................................. 10
Figure 1.6 Effect of the coolant temperature on reactivity ......................................................... 11
Figure 1.7 Effect of the coolant density on reactivity ................................................................. 12
Figure 1.8 Calculation scheme for the generation of a fixed parameter database ....................... 14
Figure 1.9 Calculation scheme for the generation of a variable-parameter database ................. 15
Figure 1.10 Variations of Xenon, Samarium, and Neptunium concentrations with burnup .......... 15
Figure 1.11 Difference in channel power (CPO results - AFM results) for Simulation condition 1 (top) and Simulation condition 2 (bottom) .................................................... 19
Figure 2.1 Reactor core: outside view (top) and inside view (bottom) ......................................... 20
Figure 2.2 Fuel loading map ....................................................................................................... 21
Figure 2.3 Power calculation procedure ...................................................................................... 25
Figure 2.4 Thermalhydraulics calculation procedure ................................................................. 27
Figure 2.5 Flow chart of coupling calculations ............................................................................ 29
Figure 2.6 Comparison of density (top) and temperature (bottom) obtained from THERMO: and AECL .......................................................... 31
Figure 2.7 Comparison of bundle power obtained from THERMO (top) and AECL (bottom) ...... 33
Figure 2.8 Comparison of coolant and cladding temperatures obtained from THERMO: (top) and AECL (bottom) .......................................................... 34
Figure 3.1 Values of the $K_{eff}$ during iterations .......................................................................... 36
Figure 3.2 Channel-power distribution at convergence .............................................................. 37
Figure 3.3 Bundle power at the first 4 iterations ........................................................................ 38
Figure 3.4 Bundle power at convergence .................................................................................... 39
Figure 3.5 Specific-heat capacity at the first 4 iterations ............................................................ 40
Figure 3.6 Specific-heat capacity at convergence ........................................................................ 40
Figure 3.7 Heat-transfer coefficient at the first 4 iterations ....................................................... 41
Figure 3.8 Heat-transfer coefficient at convergence .................................................................... 42
Figure 3.9 Coolant temperature at the first 4 iterations ............................................................. 43
Figure 3.10 Coolant temperature at convergence ....................................................................... 43
## LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>DONJON input files</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>DRAGON input files for reactivity-coefficient calculations</td>
<td>99</td>
</tr>
<tr>
<td>Appendix C</td>
<td>DRAGON input files for database generation</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P$</td>
<td>Power</td>
</tr>
<tr>
<td>$\dot{m}$</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>$q''$</td>
<td>Heat flux</td>
</tr>
<tr>
<td>$q'''$</td>
<td>Power density</td>
</tr>
<tr>
<td>$Q_1$</td>
<td>Heat transfer rate from fuel to cladding</td>
</tr>
<tr>
<td>$Q_2$</td>
<td>Heat transfer rate from cladding to coolant</td>
</tr>
<tr>
<td>$V_f$</td>
<td>Fuel volume</td>
</tr>
<tr>
<td>$V_g$</td>
<td>Cladding volume</td>
</tr>
<tr>
<td>$A_f$</td>
<td>Fuel surface area</td>
</tr>
<tr>
<td>$A_g$</td>
<td>Cladding surface area</td>
</tr>
<tr>
<td>$h_c$</td>
<td>Coolant heat transfer coefficient</td>
</tr>
<tr>
<td>$h_{gap}$</td>
<td>Gap conductance between fuel and cladding</td>
</tr>
<tr>
<td>$H$</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>$c_p$</td>
<td>Specific-heat capacity of the coolant</td>
</tr>
<tr>
<td>$N_{rod}$</td>
<td>Number of fuel rods per bundle</td>
</tr>
<tr>
<td>$R_{rod}$</td>
<td>Radius of each fuel rod</td>
</tr>
<tr>
<td>$k_c$</td>
<td>Coolant thermal conductivity</td>
</tr>
<tr>
<td>$G$</td>
<td>Mass flux</td>
</tr>
<tr>
<td>$f$</td>
<td>Single-phase friction factor</td>
</tr>
<tr>
<td>$t_f$</td>
<td>Fuel temperature</td>
</tr>
<tr>
<td>$t_g$</td>
<td>Cladding temperature</td>
</tr>
<tr>
<td>$\rho_c$</td>
<td>Coolant density</td>
</tr>
<tr>
<td>$K_{eff}$</td>
<td>Effective multiplication factor</td>
</tr>
<tr>
<td>$p$</td>
<td>Coolant pressure</td>
</tr>
<tr>
<td>AECL</td>
<td>Atomic Energy of Canada Limited</td>
</tr>
<tr>
<td>$\nu \Sigma_f$</td>
<td>Product of the macroscopic fission cross section to the average number of neutrons produced by fission</td>
</tr>
<tr>
<td>$\Sigma$</td>
<td>Total macroscopic fission cross section</td>
</tr>
<tr>
<td>$D_h$</td>
<td>Hydraulic diameter</td>
</tr>
<tr>
<td>$P_{wet}$</td>
<td>Wetted perimeter</td>
</tr>
<tr>
<td>$D_{he}$</td>
<td>Heated equivalent diameter</td>
</tr>
<tr>
<td>$P_{he}$</td>
<td>Heated perimeter</td>
</tr>
<tr>
<td>$n_{R1}$</td>
<td>Number of fuel elements in Ring 1</td>
</tr>
<tr>
<td>$Nu$</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>$Re$</td>
<td>Reynolds number</td>
</tr>
</tbody>
</table>
$Pr$ Prandtl number
$n_{R2}$ Number of fuel elements in Ring 2
$n_{R3}$ Number of fuel elements in Ring 3
$D_c$ Diameter of central pin including cladding
$D_{R1}$ Outer diameter of pins in Ring 1
$D_{R2}$ Outer diameter of pins in Ring 2
$D_{R3}$ Outer diameter of pins in Ring 3
$D_{liner}$ Inner diameter of liner
$A_{flow}$ Flow area
$\mu$ Dynamic viscosity
$c_{pf}$ Specific heat-capacity of the fuel
$c_{pg}$ Specific heat-capacity of the cladding
$PWR$ Pressurized-water reactor
INTRODUCTION

In order to implement new nuclear technologies as a solution to the growing demand for energy, 10 countries agreed on a framework for international cooperation in 2002, to form the Generation IV International Forum (GIF). The goal of the GIF is to design the next generation of nuclear reactors that would be cost effective and would enhance safety. This forum has proposed several types of Generation IV reactors including the Supercritical Water-Cooled Reactor (SCWR). The SCWR comes in two main configurations: pressure vessel SCWR and pressure tube SCWR (PT-SCWR).

Several neutronics/thermal hydraulics coupling studies have been performed on the CANDU SCWR (a PT-SCWR) to understand its properties. Shan et al. (2009a) studied the effects of fuel enrichment and of the lattice pitch on the power distribution within a channel. The channel consisted of the 43-rod CANFLEX bundle, and the coupling was done through MCNP (Briesmeister, 2000) and ATHAS (Shan et al., 2009b). To analyze the effects of fuel enrichment, two cases were considered: a reference case and an improved case. In the reference case, all fuel rods were assumed to be made of UO$_2$ enriched to 4% in U235. The results showed that, for each fuel bundle, the power was not evenly distributed across all sub-channels, with the power peak located next to the outer sub-channels. Also, the heat-transfer coefficient was relatively low around this region. Therefore, the cladding temperatures in some outer sub-channels exceeded the allowed cladding temperature. To solve this problem, Shan et al. (2009a) proposed an improved case in which the fuel rods in rings 1, 2, 3, and 4 would be enriched to 6%, 6%, 5%, and 2.5%, respectively. As a result, the radial power in each bundle was more evenly distributed, and the cladding temperatures were within the allowable limit. They concluded the study by showing that lower values of the lattice pitch resulted in a more uniform radial power distribution in a channel.

The 43-rod CANFLEX bundle was intended to be used in a horizontal CANDU SCWR, similar to a CANDU 6 reactor, with online refueling. However, it was determined that online refueling was not an easy option with supercritical water. Consequently, high-burnup bundle designs were considered so as not to use online refueling and to allow longer refueling cycles. Nevertheless, the use of high-burnup fuel imposed severe constraints on the linear element rating (LER) due to the accumulation of fission gases between the fuel and the cladding, as the fuel is irradiated (MacDonald et al., 2011). MacDonald et al. (2011) performed a neutronics/thermal hydraulics coupling study to calculate the linear element rating for three bundle designs. The first one was the 54-element-bundle design that consisted of one non-fuel rod in the center surrounded by 54 fuel rods arranged in 3 rings of 12, 18, and 24 rods, respectively.
Also, the design used fuel rods of the same diameter. The second design had 79 rods per bundle, out of which only the central pin did not contain fuel. The central pin in this case was surrounded by 3 rings of 15, 21, and 42 elements, respectively. The fuel rods in the outer ring had a smaller diameter in order to reduce their LER. As Shan et al. (2009a) had shown, the fuel rod in the outer ring would generate the maximum power in the bundle. Therefore, it would be important to impose a restriction on their diameter to insure their LER had an acceptable value. The third design had 51 rods with one non-fuel rod at the center and 50 fuel rods arranged in 3 rings of 12, 18, and 20 rods, respectively. Once again, the focus in this design was on the outer ring. This design would reduce the LER in this ring by using fuel rods with an annular shape (having a hole at the center in which the coolant flows). In all three designs, a homogeneous fuel composition of Thorium Oxyde with 12% Plutonium Oxyde was considered. MacDonald et al. (2011) concluded that the 79-rod design gave the lowest LER for a burnup of up to 40MWD/Kg.

It this study, the vertically-oriented CANDU SCWR is analyzed. It contains 336 channels with a length of 5 m. The target coolant inlet and outlet temperatures are 350 C and 625 C, respectively. The coolant flows downwards at a pressure above the critical pressure, and the reactor power is 2540 MWth.

The aim of this study is to use the neutronics-thermalhydraulics coupling method to determine the core-power distribution and the thermalhydraulics parameters of a CANDU SCWR. To this end, Chapter 1 gives a description of the SCWR-cell model and of the reactor-database generation process. Chapter 2 presents the reactor-core model, the steady-state thermalhydraulics and heat-transfer models, and the coupling algorithm. In Chapter 3, the results obtained for selected channels are conveyed. Finally, a discussion of the significance of the results concludes the study.
CHAPTER 1

CANDU SCWR CELL AND REACTOR DATABASE

The implementation of a neutronics/thermalhydraulics coupling scheme relies on the use of a reactor-cell model to generate the cross-section database for full-core calculations. The cell model also gives information about the dependence of the effective multiplicative factor on local and global parameters. This chapter gives a description of the cell model, analyzes the effects of local parameters (fuel temperature, coolant temperature, and coolant density) on the effective multiplication factor, and gives details about the reactor-database generation process.

1.1 Cell-model description

The reactor-cell model used is presented in Figure 1.1, and its parameters are given in Table 1.1 (Pencer, 2008). It has 54 fuel rods organized in 3 rings having 12, 18, and 24 elements, respectively. The center pin contains light water surrounded by cladding. Table 1.2 gives details about its composition (Pencer, 2008); in this table, the isotopic content of the PuO2 is 2.5%, 54.2%, 23.8%, 12.6%, and 6.8% in Pu238, Pu239, Pu240, Pu241, and Pu242, respectively.

The CANDU SCWR cell differs from the CANDU 6 cell in many aspects. The CANDU SCWR cell has more fuel rods per bundle, and uses an insulator and a liner to separate the pressure tube from the coolant. The insulator is used to prevent damage to the pressure tube resulting from the high-temperature coolant, and the liner protects the insulator from being damaged during channel refueling. The CANDU SCWR cell also has a central pin whose goal is to reduce the coolant-void reactivity. Due to the presence of the high-temperature coolant, the cladding is made of stainless steel, instead of Zirconium.

1.2 Cell neutronics properties

The multigroup transport equation is given by (Hebert, 2008)

\[ \Omega \cdot \nabla \phi_g(\mathbf{r}, \Omega) + \Sigma_g(\mathbf{r})\phi_g(\mathbf{r}, \Omega) = Q_g(\mathbf{r}, \Omega) \]  

(1.1)
**Table 1.1 CANDU SCWR channel parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch circle radius, ring 1</td>
<td>2.8755 cm</td>
<td>Lattice pitch</td>
<td>25 cm</td>
</tr>
<tr>
<td>Pitch circle radius, ring 2</td>
<td>4.3305 cm</td>
<td>Pressure tube inner radius</td>
<td>8.23 cm</td>
</tr>
<tr>
<td>Pitch circle radius, ring 3</td>
<td>5.8000 cm</td>
<td>Pressure tube thickness</td>
<td>1.4 cm</td>
</tr>
<tr>
<td>Radius of central pin</td>
<td>1.8 cm</td>
<td>Liner tube inner radius</td>
<td>6.8 cm</td>
</tr>
<tr>
<td>Outer radius of central pin cladding</td>
<td>2.0 cm</td>
<td>Liner tube thickness</td>
<td>0.1 cm</td>
</tr>
<tr>
<td>Radius of pins in ring 1, 2 and 3</td>
<td>0.620 cm</td>
<td>Insulator inner radius</td>
<td>6.9 cm</td>
</tr>
<tr>
<td>Outer radius of ring 1, 2 and 3 pin cladding</td>
<td>0.660 cm</td>
<td>Insulator thickness</td>
<td>1.33 cm</td>
</tr>
</tbody>
</table>

**Table 1.2 Cell composition**

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel rods</td>
<td>88 wt% ThO2, 12 wt% PuO2</td>
</tr>
<tr>
<td>Cladding (center pin and rings 1, 2, and 3)</td>
<td>310 Stainless Steel</td>
</tr>
<tr>
<td>Liner</td>
<td>30% 310 Stainless Steel, 70% Coolant</td>
</tr>
<tr>
<td>Insulator</td>
<td>30% ZrO2, 70% Coolant</td>
</tr>
<tr>
<td>Pressure tube</td>
<td>Zr-2.5Nb</td>
</tr>
<tr>
<td>Coolant</td>
<td>H2O</td>
</tr>
<tr>
<td>Moderator</td>
<td>D2O</td>
</tr>
<tr>
<td>Center pin</td>
<td>99.984% H2O, 0.0156% D2O</td>
</tr>
</tbody>
</table>
Figure 1.1 CANDU SCWR cell with 54 fuel elements per bundle

where $1 \leq g \leq G$,

and

$$Q_g(r, \Omega) = \sum_{h=1}^{G} \sum_{l=0}^{L} \frac{2l + 1}{4\pi} \sum_{s,l,g} \phi_{l,h}(r) +$$

$$\frac{1}{4\pi K_{eff}} \sum_{j=1}^{J} \sum_{h=1}^{G} \nu \Sigma_{f,j,h}(r) \phi_h(r)$$

(1.2)

$$\chi_{j,g} = \int_{u_{g-1}}^{u_g} \chi_j(u) du$$

(1.3)

In order to determine the properties of the CANDU SCWR cell and to generate the cross-section database required in subsequent full-core calculations, the version 3.06K of the DRAGON code is used (Marleau et al., 2008). The multigroup transport equation is solved (with the assumption of isotropic scattering) by the method of collision probability, using the ENDF/B-VII nuclear library. A coarse geometry is used for self-shielding calculations, and a fine-mesh geometry is chosen for flux calculations (Figure 1.2). The flux obtained is used to homogenize cross sections over the entire cell and to condense them into 2 energy groups with a boundary of 0.625 eV (Harrison and Marleau, 2011).
Figure 1.2 Cell model for self-shielding (top) and flux (bottom) calculations
1.2.1 Effect of burnup on reactivity

A lattice calculation (Figure 1.3) is done to analyse the impact of burnup on reactivity. The GEO: module defines two geometries (Figure 1.2). The NXT: module creates integration lines in both geometries. The LIB: module creates a microlib data structure that contains both microscopic and macroscopic cross sections for all reactions types and for all the isotopes considered. The microlib is generated based on the parameters given in Table 1.3. The SHI: module then performs resonance self-shielding calculations on the microlib, by using the coarse geometry. The collision probability matrices are calculated by the ASM: module, based on the self-shielded cross sections and the fine geometry. Once the collision probability matrices are known, the FLU: module determines the flux, along with the $K_{eff}$, and the EDI: module uses the flux to homogenize cross sections, over the entire cell, and to condense them into two energy groups. By using the specified bundle power and time step, the EVO: module solves the isotope evolution equations to determine their new concentrations; the new concentrations are added to the microlib. If the final simulation time is reached, the END: module terminates the DRAGON program; otherwise, the SHI: module performs self-shielding calculations on the new microlib data structure, and the computations continue according to Figure 1.3.

Once the $K_{eff}$ is known, the reactivity $\rho_{mk}$ is given by

$$\rho_{mk} = \frac{(K_{eff} - 1) \cdot 1000}{K_{eff}} \quad (1.4)$$

In Figure 1.4, the reactivity starts at 149.1 mk with fresh fuel and decreases with time due to burnup. The reactivity is not less than 0 for burnup values up to approximately 25 MWD/Kg.

In the following sections, the effects of the fuel temperature, the coolant temperature, and the

<table>
<thead>
<tr>
<th>Fuel temperature (K)</th>
<th>1273.15</th>
<th>Moderator purity (%)</th>
<th>99.833</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant temperature (K)</td>
<td>923.15</td>
<td>Boron concentration (cm\cdot b)(^{-1})</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>Moderator temperature (K)</td>
<td>342.16</td>
<td>Xenon concentration (cm\cdot b)(^{-1})</td>
<td>1.0E-24</td>
</tr>
<tr>
<td>Coolant density (g\cdot cm(^{-3}))</td>
<td>0.35</td>
<td>Samarium concentration (cm\cdot b)(^{-1})</td>
<td>1.0E-24</td>
</tr>
<tr>
<td>Moderator density (g\cdot cm(^{-3}))</td>
<td>1.08509</td>
<td>Neptunium concentration (cm\cdot b)(^{-1})</td>
<td>1.0E-24</td>
</tr>
<tr>
<td>Coolant purity (%)</td>
<td>0.0156</td>
<td>Bundle power (MW)</td>
<td>0.75595</td>
</tr>
</tbody>
</table>
Figure 1.3 Calculation scheme for the effective multiplication factor
Coolant density on reactivity, are presented. In each case, the calculation scheme of Figure 1.3 is used, and only the parameter being analyzed (fuel temperature, coolant temperature, or coolant density) is varied, while all the other local and global parameters are kept at their reference values (Table 1.3). However, in all cases, the burnup is allowed to vary.

1.2.2 Effect of the fuel temperature on reactivity

The reactivity decreases with an increase in the fuel temperature due to the doppler effect (Figures 1.5). However, the fuel-temperature coefficient increases with burnup. The average fuel-temperature coefficients are -2.0602 mk/K, -1.8952 mk/K, and -1.6589 mk/K for 0 MWD/Kg, 15 MWD/Kg, and 25 MWD/Kg, respectively. These values are calculated from Figure 1.5 by the expression $\frac{\Delta \rho_{m}}{\Delta T_f}$. The fuel-temperature coefficient decreases with the burnup probably because of the creation of U233 from Th232, and the fission cross section of U233 may counter the doppler effect.

1.2.3 Effect of the coolant temperature on reactivity

The coolant-temperature coefficient decreases with an increase in the coolant temperature. Also the sign of the coolant-temperature coefficient changes, but the temperature at which this transition occurs depends on the burnup (Figures 1.6). The change in the sign of the
Figure 1.5 Effect of the fuel temperature on reactivity
coolant-temperature coefficient could be the result of peaks in the fission cross sections of Pu239 and U233 at 0.3 eV and 200 keV, respectively. Increasing the coolant temperature increases the energy of neutrons, and some of them have energy transitions past these resonance energies. For fresh fuel, the resonance of Pu239 is the main contributor. As the fuel burnup increases, more U233 is created and less Pu239 is present; therefore, U233 becomes more significant, and the transition temperature for the coolant-temperature coefficient increases. For fresh fuel, the transition happens at \( T = 412.5 \) K, whereas for 15 MWD/Kg and 25 MWD/Kg the transition temperatures are \( T = 637.5K \) and \( T = 862.5K \), respectively.

Figure 1.6 Effect of the coolant temperature on reactivity
1.2.4 Effect of the coolant density on reactivity

The coolant-density coefficient increases with an increase in the coolant density. Also the sign of the coolant-density coefficient changes, but the density at which this transition occurs does not depend on the burnup (Figures 1.7): the transition density in all three cases is determined to be $\rho_c = 0.0875$ g/cm$^3$. For densities $\rho_c \geq \rho_{ref}$, the calculated values of the coolant density coefficients are 39.4 mk/g·cm$^3$, 47.4 mk/g·cm$^3$, and 45.1 mk/g·cm$^3$ for 0 MWD/Kg, 15 MWD/Kg, and 25 MWD/Kg, respectively. In this case, the coolant-density coefficients are the values of $\frac{\Delta \rho_{mk}}{\Delta t_c}$, calculated from Figure 1.7. Moreover, the coolant void fraction is negative since $\rho_{mk}(\rho_c = 10^{-3}$ g/cm$^3) - \rho_{mk}(\rho_c) < 0$ $\forall \rho_c$ such that $\rho_c \geq \rho_{ref}$, where $\rho_{ref}$ is the reference coolant density given in Table 1.3.

Figure 1.7 Effect of the coolant density on reactivity
1.3 Reactor-database generation

The generation of a reactor database can be done in three stages. The first stage consists of creating a fixed-parameter database with each parameter fixed at its reference value (Table 1.3). More fixed-parameter databases are created during the second stage with the use of perturbation values (Table 1.4). It is worth mentioning that in the first two stages, the computations are performed according to Figure 1.8; this is similar to Figure 1.3, with the exception that the CPO: module is used to generate the databases. Finally, in the last stage, the CFC: module combines all the databases, resulting from the first two stages, into a single variable-parameter database for full-core calculations (Figure 1.9).

Table 1.4 Perturbation database parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron concentration (cm·b)⁻¹</td>
<td>0.0</td>
</tr>
<tr>
<td>Coolant density (g·cm⁻³)</td>
<td>1.0E-4</td>
</tr>
<tr>
<td>Moderator density (g·cm⁻³)</td>
<td>0.8</td>
</tr>
<tr>
<td>Xenon concentration (cm·b)⁻¹</td>
<td>2.0E-9</td>
</tr>
<tr>
<td>Samarium concentration (cm·b)⁻¹</td>
<td>7.0E-8</td>
</tr>
<tr>
<td>Neptunium concentration (cm·b)⁻¹</td>
<td>3.0E-12</td>
</tr>
<tr>
<td>Moderator purity (%)</td>
<td>98.5</td>
</tr>
<tr>
<td>Coolant temperature (K)</td>
<td>573.15</td>
</tr>
<tr>
<td>Fuel temperature (K)</td>
<td>773.15</td>
</tr>
<tr>
<td>Moderator temperature (K)</td>
<td>292.16</td>
</tr>
<tr>
<td>Bundle power (MW)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The database parameters are not all determined in the same way:

- The Boron concentrations are selected to agree with the fact that no Boron will be used in core calculations.

- The Xenon, Samarium, and Neptunium concentrations are determined through a lattice calculation that determines their maximum values during the reactor operating cycle, as indicated in Figure 1.9.

- The maximum and minimum values of the bundle power, fuel temperature, coolant temperature, and coolant density are selected so that their values in the core, obtained with the neutronics/thermalhydraulic coupling, are within these boundaries: these values are selected so that they represent upper/lower bounds for the bundle power, fuel temperature, coolant temperature, and coolant density values obtained with the neutronics/thermalhydraulics coupling to be discussed in the next chapter.
Figure 1.8 Calculation scheme for the generation of a fixed parameter database
Figure 1.9 Calculation scheme for the generation of a variable-parameter database

Figure 1.10 Variations of Xenon, Samarium, and Neptunium concentrations with burnup
1.4 Reactor-database validation

In order to validate the reactor database, a comparison between the macroscopic cross sections obtained with DRAGON and DONJON ([Varin et al., 2005]) are compared. Different simulation conditions are selected, corresponding to reference conditions or perturbation conditions. The DRAGON macroscopic cross section data is generated by the CPO: module, while the DONJON macroscopic cross section data is generated by the AFM: module. The results show a very good agreement between the cross sections resulting from DRAGON and DONJON (Tables 1.5 and 1.6). To determine the difference in channel power resulting from the use of the CPO: and the AFM: cross sections, the core power is calculated under the following conditions:

- Simulation condition 1: \( t_f = 1273.15 \text{ K}, t_c = 923.15 \text{ K}, \rho_c = 0.0001 \text{ g} \cdot \text{cm}^{-3} \)
- Simulation condition 2: \( t_f = 1273.15 \text{ K}, t_c = 923.15 \text{ K}, \rho_c = 0.7 \text{ g} \cdot \text{cm}^{-3} \)
Table 1.5 Database validation (Part 1)

<table>
<thead>
<tr>
<th>$t_f = 1273.15 \text{ K, } t_c = 923.15 \text{ K, } \rho_c = 0.35 \text{ g} \cdot \text{cm}^{-3}$</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu \Sigma_{f} \text{ DRAGON (cm}^{-1})$</td>
<td>4.51377200E-03</td>
<td>2.48000638E-02</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DONJON (cm}^{-1})$</td>
<td>4.51373220E-03</td>
<td>2.48006161E-02</td>
</tr>
<tr>
<td>$\Sigma \text{ DRAGON (cm}^{-1})$</td>
<td>3.21466444E-01</td>
<td>4.39010563E-01</td>
</tr>
<tr>
<td>$\Sigma \text{ DONJON (cm}^{-1})$</td>
<td>3.21468766E-01</td>
<td>4.39028349E-01</td>
</tr>
<tr>
<td>$t_f = 773.15, t_c = 923.15, \rho_c = 0.35 \text{ g} \cdot \text{cm}^{-3}$</td>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DRAGON (cm}^{-1})$</td>
<td>4.55445641E-03</td>
<td>2.48937283E-02</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DONJON (cm}^{-1})$</td>
<td>4.55441698E-03</td>
<td>2.48941645E-02</td>
</tr>
<tr>
<td>$\Sigma \text{ DRAGON (cm}^{-1})$</td>
<td>3.21479797E-01</td>
<td>4.39049253E-01</td>
</tr>
<tr>
<td>$\Sigma \text{ DONJON (cm}^{-1})$</td>
<td>3.21482064E-01</td>
<td>4.39066840E-01</td>
</tr>
<tr>
<td>$t_f = 1273.15 \text{ K, } t_c = 573.15 \text{ K, } \rho_c = 0.35 \text{ g} \cdot \text{cm}^{-3}$</td>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DRAGON (cm}^{-1})$</td>
<td>4.50985294E-03</td>
<td>2.51425564E-02</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DONJON (cm}^{-1})$</td>
<td>4.50981379E-03</td>
<td>2.51429933E-02</td>
</tr>
<tr>
<td>$\Sigma \text{ DRAGON (cm}^{-1})$</td>
<td>3.21459742E-01</td>
<td>4.40689352E-01</td>
</tr>
<tr>
<td>$\Sigma \text{ DONJON (cm}^{-1})$</td>
<td>3.21462169E-01</td>
<td>4.40707863E-01</td>
</tr>
<tr>
<td>$t_f = 1273.15 \text{ K, } t_c = 1473.15 \text{ K, } \rho_c = 0.35 \text{ g} \cdot \text{cm}^{-3}$</td>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DRAGON (cm}^{-1})$</td>
<td>4.52269837E-03</td>
<td>2.42521590E-02</td>
</tr>
<tr>
<td>$\nu \Sigma_{f} \text{ DONJON (cm}^{-1})$</td>
<td>4.52265855E-03</td>
<td>2.42525829E-02</td>
</tr>
<tr>
<td>$\Sigma \text{ DRAGON (cm}^{-1})$</td>
<td>3.21576430E-01</td>
<td>4.37182931E-01</td>
</tr>
<tr>
<td>$\Sigma \text{ DONJON (cm}^{-1})$</td>
<td>3.21578734E-01</td>
<td>4.37199693E-01</td>
</tr>
</tbody>
</table>
Table 1.6 Database validation (Part 2)

<table>
<thead>
<tr>
<th>$t_f = 1273.15$ K, $t_c = 923.15$ K, $\rho_c = 0.0001$ g·cm$^{-3}$</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu\Sigma_f$ DRAGON (cm$^{-1}$)</td>
<td>3.80233530E-03</td>
<td>2.57132040E-02</td>
</tr>
<tr>
<td>$\nu\Sigma_f$ DONJON (cm$^{-1}$)</td>
<td>3.66699745E-03</td>
<td>2.59954415E-02</td>
</tr>
<tr>
<td>$\Sigma$ DRAGON (cm$^{-1}$)</td>
<td>2.82237007E-01</td>
<td>4.14263243E-01</td>
</tr>
<tr>
<td>$\Sigma$ DONJON (cm$^{-1}$)</td>
<td>2.75949165E-01</td>
<td>4.04561347E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t_f = 1273.15$ K, $t_c = 923.15$ K, $\rho_c = 0.7$ g·cm$^{-3}$</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu\Sigma_f$ DRAGON (cm$^{-1}$)</td>
<td>4.88468069E-03</td>
<td>2.55906676E-02</td>
</tr>
<tr>
<td>$\nu\Sigma_f$ DONJON (cm$^{-1}$)</td>
<td>4.91055898E-03</td>
<td>2.58561428E-02</td>
</tr>
<tr>
<td>$\Sigma$ DRAGON (cm$^{-1}$)</td>
<td>3.60683613E-01</td>
<td>4.72757666E-01</td>
</tr>
<tr>
<td>$\Sigma$ DONJON (cm$^{-1}$)</td>
<td>3.66969935E-01</td>
<td>4.85383192E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t_f = 528.501$ K, $t_c = 416.388$ K, $\rho_c = 0.264086$ g·cm$^{-3}$</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu\Sigma_f$ DRAGON (cm$^{-1}$)</td>
<td>4.44213714E-03</td>
<td>2.53161277E-02</td>
</tr>
<tr>
<td>$\nu\Sigma_f$ DONJON (cm$^{-1}$)</td>
<td>4.41257098E-03</td>
<td>2.52200373E-02</td>
</tr>
<tr>
<td>$\Sigma$ DRAGON (cm$^{-1}$)</td>
<td>3.11764035E-01</td>
<td>4.34029735E-01</td>
</tr>
<tr>
<td>$\Sigma$ DONJON (cm$^{-1}$)</td>
<td>3.10630768E-01</td>
<td>4.36999360E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t_f = 1028.5$ K, $t_c = 805.099$ K, $\rho_c = 0.1938247$ g·cm$^{-3}$</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu\Sigma_f$ DRAGON (cm$^{-1}$)</td>
<td>4.26642017E-03</td>
<td>2.49514516E-02</td>
</tr>
<tr>
<td>$\nu\Sigma_f$ DONJON (cm$^{-1}$)</td>
<td>4.20798628E-03</td>
<td>2.51534902E-02</td>
</tr>
<tr>
<td>$\Sigma$ DRAGON (cm$^{-1}$)</td>
<td>3.03934086E-01</td>
<td>4.27176837E-01</td>
</tr>
<tr>
<td>$\Sigma$ DONJON (cm$^{-1}$)</td>
<td>3.01729445E-01</td>
<td>4.32215285E-01</td>
</tr>
</tbody>
</table>

In Figure 1.11, the maximum error occurs at outer channels, and has a value of 3.5% of the channel power where it occurs; the power of this channel is 3.02 MW.
Figure 1.11 Difference in channel power (CPO results - AFM results) for Simulation condition 1 (top) and Simulation condition 2 (bottom)
CHAPTER 2

STEADY-STATE ANALYSIS

After generating and validating the cross-section database, the next step is to implement a reactor-core model, a thermalhydraulics model, a heat-transfer model, and a neutronics/thermalhydraulics coupling methodology.

2.1 Reactor-core model

Figure 2.1 Reactor core: outside view (top) and inside view (bottom)
The reactor is made of 336 channels of 5 m in length. It has a vertical orientation, and the coolant flows downward. As Figure 2.1 shows, the coolant enters the inlet plenum through inlet pipes. It spreads across all channels in such a way as to maintain an even channel input mass-flow rate and temperature. It then flows through the channels all the way to the outlet header (MacDonald et al., 2011).

In contrast to the CANDU 6 reactor, this reactor design does not support online refueling, and one possible reason for this choice is the need for a new refueling machine design to deal with supercritical water. As a result, the designers of this reactor plan on using a three-batch scheme in which one third of the core contains fresh fuel, one third contains fuel having spent a loading cycle in the core, and the remaining third has fuel having spent two loading cycles. The cycle length depends on the fuel composition, and the designers chose the fuel arrangement of Figure 2.2 so as to minimize the power peaking factor (MacDonald et al., 2011).

Although the designers intent to use a three-batch scheme, the present study is done with the assumption that the core is filled with fresh fuel; furthermore, neither reactivity control mechanisms nor burnable absorbers are taken into account.

### 2.2 Thermalhydraulics and heat-transfer models

In order to perform a thermalhydraulics and heat-transfer analysis, the THERMO: module (Adouki, 2011) has been included in the DONJON code. Let $z$ be an axial location measured from the channel inlet; the module determines the fuel temperature $t_f(z)$, the cladding temperature $t_p(z)$, the coolant pressure $p(z)$, the coolant density $\rho_c(z)$, and the coolant tem-
perature \( t_c(z) \) at the axial location \( z \) from \( p(0), m, q''(z), \rho_c(0), \) and \( t_c(0) \). Solving this problem requires models for thermalhydraulics and heat-transfer. The following models are known to give satisfactory results:

- 1-D model for thermalhydraulics (Tapucu, 2009).
- Doubly-lumped parameter model for heat-transfer (Lewis, 1977).

During constant-power conditions, the core-power distributions changes; therefore, thermalhydraulics parameters change with time. However, their rates of change are so small that they can be ignored, as it is commonly done. As a result, steady-state models for thermalhydraulics and heat transfer are used in this chapter.

### 2.2.1 Thermalhydraulics model

The 1-D thermalhydraulics model is based on the following conservation laws:

- **Mass:**
  \[
  \dot{m}(z) = \text{constant} \quad (2.1)
  \]

- **Momentum:**
  \[
  \frac{dP(z)}{dz} = -\frac{fG^2}{2\rho_c(z)D_h} - G^2 \frac{d\left(\frac{1}{\rho_c(z)}\right)}{dz} + \rho_c(z)g \quad (2.2)
  \]

- **Energy:**
  \[
  \frac{dH(z)}{dz} = 2\pi q''(z)R_{rod}\frac{N_{rod}}{\dot{m}} \quad (2.3)
  \]

Not having an adequate correlation for the friction factor \( f \), the following assumption is made:

\[
-\frac{fG^2}{2\rho_c(z)D_h} + \rho_c(z)g = 0 \quad (2.4)
\]

so that the momentum conservation becomes:

\[
\frac{dP(z)}{dz} = -G^2 \frac{d\left(\frac{1}{\rho_c(z)}\right)}{dz} \quad (2.5)
\]

Applying the conservation laws between \( z \) and \( z + \Delta z \), for \( \Delta z \) small, gives for the momentum equation

\[
P(z + \Delta z) = P(z) - G^2 \left(\frac{1}{\rho(z + \Delta z)} - \frac{1}{\rho(z)}\right) \quad (2.6)
\]
while the energy equation becomes
\[
H(z + \Delta z) - H(z) = \frac{2\pi q''(z) \Delta z R_{rod} N_{rod}}{\dot{m}}
\] (2.7)

The relation
\[
H(z + \Delta z) - H(z) = c_p(z) (t_c(z + \Delta z) - t_c(z))
\] (2.8)
gives
\[
t_c(z + \Delta z) = \frac{2\pi q''(z) \Delta z R_{rod} N_{rod}}{\dot{m} c_p(z)} + t_c(z)
\] (2.9)

The heat-transfer coefficient is
\[
h_c(z) = \frac{k_c(z) N_u(z)}{D_{he}}
\] (2.10)

From (MacDonald et al., 2011), we obtain that:
\[
N_u(z) = 0.023 Re^{0.8}(z) Pr^{0.4}(z)
\] (2.11)
\[
D_{he} = \frac{4A_{flow}}{P_{he}}
\] (2.12)
\[
P_{he} = \pi (D_c + n_{R1}D_{R1} + n_{R2}D_{R2} + n_{R3}D_{R3})
\] (2.13)
\[
A_{flow} = \frac{\pi}{4} (D_{liner}^2 - D_c^2 - n_{R1}D_{R1}^2 - n_{R2}D_{R2}^2 - n_{R3}D_{R3}^2)
\] (2.14)
\[
D_h = \frac{4A_{flow}}{P_{wet}}
\] (2.15)
\[
P_{wet} = \pi (D_{liner} + D_c + n_{R1}D_{R1} + n_{R2}D_{R2} + n_{R3}D_{R3})
\] (2.16)
\[
Pr(z) = \frac{c_p(z) \mu(z)}{k_c(z)}
\] (2.17)

### 2.2.2 Heat-transfer model

The heat-transfer model is based on the doubly-lumped parameter model, and it has the following attributes:

- It neglects the axial heat transfer along the fuel and the cladding.
- Instead of using \(t_f(z, r)\) and \(t_g(z, r)\), it uses their channel-averaged values in the radial direction, between \(z\) and \(z + \Delta z\), denoted by \(t_f(z)\) and \(t_g(z)\), respectively.
By using the energy balance in the fuel and in the cladding, between \( z \) and \( z + \Delta z \), we obtain for each fuel rod:

\[
q''(z)V_f - Q_1(z) = 0
\]

\[
Q_1(z) - Q_2(z) = 0
\]

\[
Q_2(z) = h_c(z)A_g[t_g(z) - t_c(z)]
\]

\[
Q_1(z) = A_f h_{gap}[t_f(z) - t_g(z)]
\]

Therefore,

\[
t_g(z) = \frac{q''(z)V_f}{h_c(z)A_g} + t_c(z) \quad (2.18)
\]

\[
t_f(z) = \frac{q''(z)V_f}{h_g(z)A_f} + t_g(z) \quad (2.19)
\]

### 2.3 Reactor-power calculation procedure

The multigroup steady state diffusion equation is given by (Hébert, 2008)

\[
- \nabla \cdot D_g(\mathbf{r})\nabla \phi_g(\mathbf{r}) + \Sigma_g(\mathbf{r}) = Q_g(\mathbf{r}) \quad (2.20)
\]

The source term is

\[
Q_g(\mathbf{r}) = \sum_{h=1}^G \Sigma_{g-h}(\mathbf{r})\phi_g(\mathbf{r}) + \frac{\chi_g(\mathbf{r})}{K_{eff}} \sum_{h=1}^G \nu \Sigma_{fh}(\mathbf{r})\phi_h(\mathbf{r}) \quad (2.21)
\]

The reactor core model is implemented with the 3-D diffusion code DONJON version 3.02B (Varin et al., 2005), and calculations are performed with two energy groups. Each channel is partitioned into 10 cells of length, width, and height 25 cm, 25 cm, and 50 cm, respectively. The flux in each cell is determined by the Mesh-Centered-Finite-Difference Approximation. At the onset of a power calculation (Figure 2.3), the GEOD: creates the core geometry which consists of 10 planes of 576 cells each, 336 cells of which are fuel ones. The USPLIT: module performs mesh splitting on the geometry and determines new mixtures indices so that every mixture index corresponds to only one sub-region. After the mesh splitting is completed, the TRIVAT: module performs a TRIVAC-type tracking on the geometry, and the geometry is then used by the INIRES: module to create a fuel map. The fuel map contains information on each fuel cell, such as fuel burnup, fuel power, fuel temperature, coolant temperature, and
Figure 2.3 Power calculation procedure
coolant density. The REFRES: module establishes a correspondence between the calculation geometry, the material indices, and the fuel map; this singles out indices that refer to mixtures in fuel cells from indices that do not. By using the information about each cell, the AFM: module creates two macroscopic cross sections data structures: one for fuel cells and the other one for reflector cells. These data structures are combined into a single one by the UNIMAC: module, and this allows the TRIVAA: module to create systems matrices necessary for flux calculations. The FLUD: module determines the flux distribution in the core, which is then averaged over each cell by the FLXAXC: module. Finally, the POWER: module uses the average flux and the total core power, to determine the power in each cell.

2.4 Thermalhydraulics calculation procedure

The goal of the new THERMO: module is to determine, for each channel, the fuel temperature $t_f(z)$, the cladding temperature $t_g(z)$, the coolant pressure $p(z)$, the coolant density $\rho_c(z)$, and the coolant temperature $t_c(z)$ at the axial location $z$ from $p(0)$, $\dot{m}$, $q''(z)$, $\rho_c(0)$, and $t_c(0)$. The module uses the finite-volume method, the conservation laws, and the NIST Standard Reference Database 23 (NIST, 2011) to determine the unknown parameters. Calculations are based on the value of $h_{gap} = 10 \text{ kW/m}^2/\text{oC}$ (Rozon, 1998) and the channel design parameters depicted in Table 2.1 (MacDonald et al., 2011). The algorithm of the module is given in Figure 2.4. It is based on the assumption that an equation of state, giving all the thermodynamic properties of water, is available. Thus, after selecting a channel, the module determines $h_c(z)$, $t_g(z)$, and $t_f(z)$ from $t_c(z)$ and $p(z)$ by using equations 2.10 through 2.19. $t_c(z + \Delta z)$ is calculated from equation 2.9 by using $p(z)$, $t_c(z)$, and the bundle powers for the channel being analyzed, and equations 2.10 through 2.20 allow the calculation of $h_c(z + \Delta z)$, $t_g(z + \Delta z)$, and $t_f(z + \Delta z)$ from $t_c(z + \Delta z)$ and $p(z)$. Finally, Equation 2.6 gives $p(z + \Delta z)$ from $p(z)$ and $t_c(z + \Delta z)$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure (MPa)</td>
<td>26</td>
</tr>
<tr>
<td>Inlet temperature (°C)</td>
<td>350</td>
</tr>
<tr>
<td>Channel massflow rate (Kg/s)</td>
<td>3.89</td>
</tr>
</tbody>
</table>
Figure 2.4 Thermalhydraulics calculation procedure
2.5 Description of the neutronics/thermalhydraulics coupling procedure

The THERMO: module exchanges data with the rest of the DONJON code, through the fuel map file that contains the data for each cell (Figure 2.5 top). In Figure 2.5 (bottom), the method starts with a core-power calculation performed from the default thermalhydraulics parameters given in Table 2.2. The resulting bundle powers are saved into the fuel map. Bundle powers are then read from the fuel map, and the THERMO: module determines the coolant temperature, the coolant density, and the fuel temperature of each cell, and this data is saved into the fuel map. The fuel temperature, coolant temperature, and coolant density of each bundle are then read, and bundle powers are computed through a full-core calculation, based on the temperature and density data of each cell; the AFM: module uses this data to determine the cross sections of each cell. The resulting bundle powers are again saved. This process is repeated until the convergence of the effective multiplication factor is reached.

Note: In Figure 2.5, the initialization $k_{eff(i-1)} = 0$ is done so as to ensure that at least the second iteration is performed.

Table 2.2 Default local and global parameters for the THERMO: module

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (Kg/m$^3$)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>N.A.</td>
<td>1273.15</td>
</tr>
<tr>
<td>Coolant (light water)</td>
<td>350</td>
<td>923.15</td>
</tr>
<tr>
<td>Moderator (heavy water)</td>
<td>1085.09</td>
<td>342.16</td>
</tr>
</tbody>
</table>
Figure 2.5 Flow chart of coupling calculations
2.6 Validation tests for the THERMO: module

In order to validate the THERMO: module, three tests are performed in which the results of the THERMO: module are compared to those of AECL.

2.6.1 Test 1

In this test, the coolant temperature and density, for the average-power channel, are used as validation parameters. First, the core power is calculated with the fuel arrangement of Figure 2.2 and homogeneous thermalhydraulics parameters. Then, the resulting coolant temperature and density are determined without a neutronics/thermalhydraulics coupling; therefore, in this channel, the power is symmetrical with respect to the normal plane to the channel axis, at 2.5 m from the channel inlet. Also, the mass flow rate used is selected so as to have a coolant output temperature of 625 °C while a constant channel pressure of 25.1 MPa is assumed. The coolant temperature and density predicted by THERMO: agree with those calculated by AECL, within 3%. Even though both data sets agree well (Figure 2.6), the graphs obtained with the THERMO: module show some discontinuities in the slope, whereas those obtained by AECL are smooth. The discontinuities occur only between two adjacent bundles. They result from the fact that the average power of each bundle was used in thermalhydraulics calculations. From Equation 2.9, the slope of the coolant-temperature curve is given by \( \frac{2\pi q''(z)R_{rod}N_{rod}}{m_{avg}(z)} \), and \( q''(z) \) may have discontinuities at the interface of two bundles and accordingly affect the slope at these locations.

2.6.2 Test 2

This test uses the bundle powers of the maximum-power channel as the validation parameter. In the case of THERMO:, the core power is determined through a neutronics/thermalhydraulics coupling procedure under the assumption that the core is filled with fresh fuel only. Thermalhydraulics calculations are done with a channel mass-flow rate of 3.89 Kg/s. In the case of AECL, the same neutronics/thermalhydraulics coupling method is performed with a channel mass-flow rate of 3.89 Kg/s and the fuel loading pattern of Figure 2.2; Figure 2.7 gives the results. The AECL graph shows results both at the beginning of cycle (blue curve) and at the end of cycle (red curve). The result comparison at the beginning of cycle indicates a power peak at the third bundle (from the channel input) in the case of THERMO: and at the fourth bundle in the case of AECL. Also, the power peak predicted by THERMO: is higher than that predicted by EACL since only fresh fuel is used in the THERMO: core model, while a combination of fresh and spent fuel is used in the AECL core model (Figure 2.2). Moreover, the use of spent fuel shifts the power peak to the right, as it
Figure 2.6 Comparison of density (top) and temperature (bottom) obtained from THERMO: and AECL
is the case for the AECL results. Therefore, the power obtained with THERMO: agrees with that obtained by AECL.

2.6.3 Test 3

This final test uses the coolant and the cladding temperatures, of the average-power channel, as validation parameters. The assumptions are similar to those of Test 2, with the exception that a constant channel pressure of 25 MPa is taken into account. In Figure 2.8, the coolant temperature predicted by THERMO: is similar to that predicted by AECL, with the exception that the peak in the temperature given by THERMO: is lightly shifted to the left of the one predicted by AECL. For the cladding temperature, both data sets show peaks next to the channel inlet; the peak predicted by THERMO: is higher than that predicted by AECL. Another observation from Figure 2.8 is that the cladding temperatures determined by THERMO:, for the last 5 bundles in the channel, are lower than their corresponding values given by AECL; this is because THERMO: predicts a bundle-power profile that is shifted to the left of the one predicted by AECL.
Figure 2.7 Comparison of bundle power obtained from THERMO (top) and AECL (bottom)
Figure 2.8 Comparison of coolant and cladding temperatures obtained from THERMO: (top) and AECL (bottom)
CHAPTER 3

RESULTS FOR STEADY-STATE ANALYSIS

The neutronics/thermalhydraulics method, introduced in the previous chapter, is used to
determine the core power and the thermalhydraulics parameters of its channels. These results
are presented in this chapter.

3.1 Effective multiplication factor

<table>
<thead>
<tr>
<th>$K_{eff}$</th>
<th>Iteration number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.149594E+00</td>
<td>1</td>
</tr>
<tr>
<td>1.164142E+00</td>
<td>2</td>
</tr>
<tr>
<td>1.155806E+00</td>
<td>3</td>
</tr>
<tr>
<td>1.159475E+00</td>
<td>4</td>
</tr>
<tr>
<td>1.157450E+00</td>
<td>5</td>
</tr>
<tr>
<td>1.158354E+00</td>
<td>6</td>
</tr>
<tr>
<td>1.157941E+00</td>
<td>7</td>
</tr>
<tr>
<td>1.158120E+00</td>
<td>8</td>
</tr>
<tr>
<td>1.158044E+00</td>
<td>9</td>
</tr>
<tr>
<td>1.158075E+00</td>
<td>10</td>
</tr>
<tr>
<td>1.158063E+00</td>
<td>11</td>
</tr>
<tr>
<td>1.158068E+00</td>
<td>12</td>
</tr>
</tbody>
</table>
In Table 3.1 and Figure 3.1, the value of the effective multiplication factor oscillates around the convergence value. If one iteration under-estimates the $K_{eff}$, the next one will over-estimate it, and vice-versa. This process is repeated until convergence, as the difference between successive values of the $K_{eff}$ decreases. The value $\epsilon = 10^{-5}$ is used in the convergence condition for the $K_{eff}$ in Figure 2.5.

### 3.2 Channel-power distribution

Figure 3.2 shows that the channel power is not evenly distributed; most channels have a power larger than the average channel power (7.556 MW). The high power density at the center of the core results from the use of fresh fuel without any reactivity control mechanisms. The results are as follows:

- Maximum channel power: 10.55 MW
- Minimum channel power: 4.05 MW
- Power peaking factor: 1.4
Figure 3.2 Channel-power distribution at convergence
3.3 Results for channel 1

3.3.1 Bundle power

In Figure 3.3, each iteration either over-estimates a bundle power, or under-estimates it. If a bundle power is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive bundle powers diminishes, from one iteration to the next one. Also, the location of the bundle-power peak oscillates during iterations. If it is under-estimated at one iteration, it will be over-estimated at the next iteration. This process is repeated until convergence is reached (Figure 3.4), at which point the bundle-power peak is located at the third bundle from the channel inlet.

Even though a convergence test was only applied to the $K_{eff}$ in Figure 2.5, the results of Figure 3.4 show that the convergence criterion used, in Figure 2.5, is sufficient to guarantee the convergence of the power and, consequently, the convergence of thermalhydraulics parameters.
3.3.2 Specific-heat capacity

Studies have shown, in the case of supercritical water, that the specific-heat capacity has its maximum value at the pseudo-critical point (Pioro and Duffey, 2007). Therefore, Figures and 3.5 and 3.6 give the locations of the pseudo-critical point from one iteration to another. Each iteration either over-estimates a specific-heat capacity, or under-estimates it. If a value of the specific-heat capacity is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the specific-heat diminishes, from one iteration to the next one. Moreover, each iteration either over-estimates the position of the pseudo-critical point, or under-estimates it. If an iteration under-estimates this position, the next iteration will over-estimate it, and vice-versa. This process is repeated as the difference between successive positions of the pseudo-critical point diminishes, from one iteration to the next one.
Figure 3.5 Specific-heat capacity at the first 4 iterations

Figure 3.6 Specific-heat capacity at convergence
3.3.3 Heat-transfer coefficient

An analysis of the heat-transfer coefficient in a channel is useful in understanding its temperature profiles. In this study, the maximum of the heat-transfer coefficient coincides with that of the specific-heat capacity (Figures 3.5 and 3.7). Also, if a value of the heat-transfer coefficient is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the heat-transfer coefficient diminishes, from one iteration to the next one. At convergence, the position of the peak of the heat-transfer coefficient coincides with that of the specific-heat capacity (Figures 3.6 and 3.8).
3.3.4 Coolant temperature

The coolant temperature increases rapidly at the approach of the peak of the heat-transfer coefficient (Figure 3.8); when the heat-transfer coefficient is maximum, the rate of heat transfer to the coolant is also maximum. Also, if a value of the coolant temperature is underestimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant temperature diminishes, from one iteration to the next one, until convergence is reached (Figure 3.10).
Figure 3.9 Coolant temperature at the first 4 iterations

Figure 3.10 Coolant temperature at convergence
3.3.5 Coolant density

It is known that, for supercritical water, the coolant density varies rapidly around the pseudo-critical point (Pioro and Duffey, 2007). As a result, since the location of the pseudo-critical point changes from one iteration to another, the shape of the density curve is affected by each iteration until convergence is reached. Moreover, if a value of the coolant density is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant density diminishes, from one iteration to the next one (Figures 3.11 through 3.12).
3.3.6 Pressure along the channel

In general, the pressure drop is determined by the energy transfer resulting from friction, acceleration, or gravity. The friction and gravity contributions are neglected in Equation 2.4. Therefore, the pressure drop obtained in this chapter is only determined by the coolant-density changes in the channel. Consequently, the higher the coolant-density gradient, the higher the coolant-pressure gradient (Figures 3.11 through 3.14). Also, if one iteration under-estimates the pressure, the next one over-estimates it, and vice-versa. This process is repeated until convergence is reached.

Figure 3.12 Coolant density at convergence
Figure 3.13 Pressure at the first 4 iterations

Figure 3.14 Pressure at convergence
3.3.7 Fuel and cladding temperatures

In Figure 3.15, the fuel and cladding temperatures, for bundles next to the channel inlet, increase due to the low heat-transfer coefficient. Around the pseudo-critical point, they decrease with the rapid increase in the heat-transfer coefficient. Towards the end of the channel, they increase as a result of the low heat-transfer coefficient. The discontinuity in the fuel and cladding temperatures, for adjacent bundles, results from the discontinuity of the power from one bundle to the next one. Moreover, the center-line temperatures for the fuel and the cladding may be lower than their fusion temperatures (3300 Celsius for the fuel and 850 Celsius for the cladding), since their radially-averaged values are below these limits.
3.4 Results for channel 5

3.4.1 Bundle power

In Figure 3.16, each iteration either over-estimates a bundle power, or under-estimates it. If a bundle power is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive bundle powers diminishes, as convergence is approached (Figure 3.16). Also, the location of the bundle-power peak oscillates during iterations. If it is under-estimated at one iteration, it will be over-estimated at the next iteration. This process is repeated until convergence is reached (Figure 3.17), at which point the bundle-power peak is located at the third bundle from the channel inlet. Furthermore, the value of the peak bundle power for Channel 5 is larger than that of Channel 1 since Channel 5 has a higher power.
3.4.2 Specific-heat capacity

In Figure 3.18, each iteration either over-estimates the specific heat, or under-estimates it. If a value of the specific heat capacity is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the specific heat capacity diminishes, from one iteration to the next one. Moreover, each iteration either over-estimates the position of the pseudo-critical point, or under-estimates it. If an iteration under-estimates this position, the next iteration will over-estimate it, and vice-versa. This process is repeated as the difference between successive positions of the pseudo-critical point diminishes, from one iteration to the next (Figure 3.18). At convergence, the peak of the specific-heat capacity of Channel 5 is shifted to the left of the one for Channel 1, due to the higher power of Channel 5 (Figures 3.6 and 3.19).
Figure 3.18 Specific-heat capacity at the first 4 iterations

Figure 3.19 Specific-heat capacity at convergence
3.4.3 Heat-transfer coefficient

![Graph showing heat transfer coefficient at the first 4 iterations]

Figure 3.20 Heat transfer coefficient at the first 4 iterations

The position of the maximum of the heat-transfer coefficient coincides with that of the specific heat (Figures 3.18, 3.19, 3.20, and 3.21). Also, if a value of the heat-transfer coefficient is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the heat-transfer coefficient diminishes, from one iteration to the next one, as convergence is approached (Figure 3.21).
3.4.4 Coolant temperature

The coolant temperature increases rapidly at the approach of the peak of the heat-transfer coefficient (Figure 3.22); when the heat-transfer coefficient is maximum, the rate of heat transfer to the coolant is also maximum. Also, if a value of the coolant temperature is underestimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant temperature diminishes, from one iteration to the next one, until convergence is reached (Figure 3.23). At convergence, the exit coolant temperature for Channel 5 is higher than the one for Channel 1; these are the consequences of the relatively higher power for Channel 5.
Figure 3.22 Coolant temperature at the first 4 iterations

Figure 3.23 Coolant temperature at convergence
3.4.5 Coolant density

Figure 3.24 Coolant density at the first 4 iterations

In Figure 3.24, if a value of the coolant density is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant density diminishes, from one iteration to the next one. In Figure 3.25, the coolant density has an earlier drop and a lower exit value, compared to Figure 3.11.
3.4.6 Pressure along the channel

In Figure 3.26, if one iteration under-estimates the pressure, the next one over-estimates it, and vice-versa. The process is repeated as the difference between successive values of the pressure diminishes, from one iteration to the next. In Figure 3.27, the pressure has an earlier drop and a lower exit value, compared to Figure 3.14.
Figure 3.26 Pressure at the first 4 iterations

Figure 3.27 Pressure at convergence
3.4.7 Fuel and cladding temperatures

In Figure 3.28, the fuel and cladding temperatures, for bundles next to the channel inlet, increase due to the low heat-transfer coefficient. Around the pseudo-critical point, they decrease with the rapid increase in the heat-transfer coefficient. Towards the end of the channel, they increase as a result of the low heat-transfer coefficient. Also, Channel 5 has higher fuel and cladding temperatures than Channel 1, and the center-line temperatures for the fuel and the cladding, in the case of Channel 5, may be lower than their fusion temperatures (3300 Celsius for the fuel and 850 Celsius for the cladding), since their radially-averaged values are below these limits.
3.5 Results for channel 10

3.5.1 Bundle power

In Figure 3.29, each iteration either over-estimates a bundle power, or under-estimates it. If a bundle power is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive bundle powers diminishes, as convergence is approached (Figure 3.30). Also, the location of the bundle-power peak oscillates during iterations. If it is under-estimated in one iteration, it will be over-estimated at the next iteration. This process is repeated until convergence is reached (Figure 3.30), at which point the bundle-power peak is located at the third bundle from the channel inlet. Furthermore, the value of the peak bundle power for Channel 10 is larger than that of Channel 5 since Channel 10 has a higher power.
3.5.2 Specific-heat capacity

In Figure 3.31, each iteration either over-estimates the specific heat, or under-estimates it. If a value of the specific heat is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the specific heat diminishes, from one iteration to the next one. Moreover, each iteration either over-estimates the position of the pseudo-critical point, or under-estimates it. If an iteration under-estimates this position, the next iteration will over-estimate it, and vice-versa. This process is repeated as the difference between successive positions of the pseudo-critical point diminishes, from one iteration to the next one. At convergence, the peak of the specific-heat capacity of Channel 10 is shifted to the left of the one for Channel 5, due to the higher power of Channel 10 (Figures 3.19 and 3.32).
Figure 3.31 Specific-heat capacity at the first 4 iterations

Figure 3.32 Specific-heat capacity at convergence
3.5.3 Heat-transfer coefficient

In Figure 3.33, if a value of the heat-transfer coefficient is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the heat-transfer coefficient diminishes, from one iteration to the next, as convergence is approached (Figure 3.33).
3.5.4 Coolant temperature

The coolant temperature increases rapidly at the approach of the peak of the heat-transfer coefficient (Figure 3.35); when the heat-transfer coefficient is maximum, the rate of heat transfer to the coolant is also maximum. Also, if a value of the coolant temperature is underestimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant temperature diminishes, from one iteration to the next one, until convergence is reached (Figure 3.36). At convergence, the position of the initial temperature peak for Channel 10 is shifted to the left of the one for Channel 5. Also, the exit coolant temperature for Channel 10 is higher than the one for Channel 5; these are the consequences of the relatively higher power for Channel 10.
Figure 3.35 Coolant temperature at the first 4 iterations

Figure 3.36 Coolant temperature at convergence


3.5.5 Coolant density

In Figure 3.37, the location of the pseudo-critical point changes from one iteration to another, until convergence is reached. Moreover, if a value of the coolant density is under-estimated at an iteration, it will be over-estimated at the next iteration, and vice-versa. This process is repeated as the difference between successive values of the coolant density diminishes, from one iteration to the next. In Figure 3.38, the coolant density has an earlier drop and a lower exit value, compared to Figure 3.25.

Figure 3.37 Coolant density at the first 4 iterations
3.5.6 Pressure along the channel

In Figures 3.37 and 3.39, the higher the coolant-density gradient, the higher the coolant-pressure gradient. Also, if one iteration under-estimates the pressure, the next one over-estimates it, and vice-versa. This process is repeated until convergence is reached (Figure 3.40). In Figure 3.41, the pressure has an earlier drop and a lower exit value, compared to Figure 3.27.

Figure 3.38 Coolant density at convergence
Figure 3.39 Pressure drop at the first 4 iterations

Figure 3.40 Pressure at convergence
### 3.5.7 Fuel and cladding temperatures

In Figure 3.41, the fuel and cladding temperatures, for bundles next to the channel inlet, increase due to the low heat-transfer coefficient. Around the pseudo-critical point, they decrease with the rapid increase in the heat-transfer coefficient. Towards the end of the channel, they increase as a result of the low heat-transfer coefficient. Also, Channel 10 has higher fuel and cladding temperatures than Channel 5, and the center-line temperature for the fuel, in the case of Channel 10, may be lower than its fusion temperature, since the calculated fuel temperatures are below this limit. However, for Channel 10, the cladding temperatures, of some bundles, exceed their allowable limit.
CHAPTER 4

CONCLUSION

The aim of this study has been to analyze the core-power distribution and the thermalhydraulics parameters of a CANDU SCWR, through the neutronics-thermalhydraulics coupling approach.

The core power obtained has a power peaking factor of 1.4. The bundle power distribution for all channels has a peak at the third bundle from the inlet, but the value of this peak increases with the channel power. The heat-transfer coefficient and the specific-heat capacity have a peak at the same location in a channel, and this location shifts toward the inlet as the channel power increases. The exit coolant temperature increases with the channel power, while the exit coolant density and pressure decrease with the channel power. Also, higher channel powers lead to higher fuel and cladding temperatures. Moreover, as the coupling method is applied, the effective multiplication factor and the values of thermalhydraulics parameters oscillate as they converge.

The results obtained agree with those predicted by AECL. In the latter case, a batch-3 refueling scheme was used, whereas this study was based on a core with fresh fuel only.
ADOUKI, P. (2011). The THERMO module has been designed by P. Adouki as part of his MSc.A. thesis.

ADOUKI, P. (2012). The TRANS module has been designed by P. Adouki as part of his MSc.A. thesis.


APPENDIX A

DONJON input files

A.1 Main input file

******************************************************************************
* *
* Input file : SCWR_Core_54.x2m *
* Purpose : Full core calculations *
* *
* Author : Pierre Adouki (2011/05) *
* *
* Note : Compatible with DONJON-3.02B *
* *
******************************************************************************

PROCEDURE PGeoIns4Z PmacfixIns MapflInit ;
MODULE TRIVAT: INIMAC: NEWMAC: LINKDS: TRIVAA: FLUD: 
    GREP: END: FLXAXC: INIRES: REFRES: POWER: AFM: 
LINKED_LIST Geometrie INDEX TRACK MACRO MACRO2 MACROFL 
DEVICE PROCEDE SYSTEM FLUX MAPFL TABFL 
    peakFactor kEffective ;
SEQ_ASCII flu mapfl map macro ;
STRING variableName ;
INTEGER iStep := 0 ;
REAL time finalTime step ; 
EVALUATE time := 0. ;
EVALUATE finalTime := 1. ;
EVALUATE step := 1. ;

*----
* fnat.cpo : propriété cellule 2G fonction du burnup
* rnat.cpo : propriété reflecteur 2G indépendant du burnup
* Bi : Burnup of mix i (MWj/T)

-----
SEQ.ASCII FBMDAT rnat.cpo macrofl map ;
LINKED_LIST FBMDATA NREFL ;
FBMDATA := FBMDAT ;
NREFL := rnat.cpo ;

REAL B1 B2 B3 keffInit keffFin deltaKeff tCool dCool tFuel ;

EVALUATE B1 := 0. ;
EVALUATE B2 := 0. ;
EVALUATE B3 := 0. ;

-----
* Geometry definition
*--
INTEGER Maxreg ;
Geometrie INDEX := PGeoIns4Z :: >>Maxreg<< ;
*--
* Applying tracking
*--
TRACK := TRIVAT: Geometrie :: EDIT 0
   MAXR <<Maxreg>> MCFD 1 ;
*----
* Macrolib definition
*----

MAPFL := MapflInit :: <<B1>> <<B2>> <<B3>> ;

INDEX MAPFL := REFRES: INDEX MAPFL Geometrie ;

* MACRO := CRE: NREFL ::
* EDIT 0 NMIX 4
READ COMPO NREFL MIX 4 'MIXT MOD 1' ENDMIX;

MACRO := AFM: FBMDATA MAPFL ::
MCR 4
INFOR 'SCWR_DATABASE'
DNAME 1 'MODFBMDATA'
REFT 4 'MODFBMDATA'
;

MACROFL := AFM: FBMDATA MAPFL ::
MAP
INFOR 'SCWR_DATABASE'
DNAME 3 'FULFBMDATA' 'FULFBMDATA' 'FULFBMDATA'
REFT 1 'FULFBMDATA' 2 'FULFBMDATA' 3 'FULFBMDATA'
BORON 0.0
;

*--
* Creating extended macrolib
*--
MACRO2 := INIMAC: INDEX MACRO MACROFL ;

*-----
* Flux calculations
*-----
SYSTEM := TRIVAA: MACRO2 TRACK :: EDIT 0 ;
FLUX := FLUD: SYSTEM TRACK :: EDIT 0 ;

MAPFL := FLXAXC: MAPFL FLUX TRACK INDEX ::
FLUX-AV ;

MAPFL := POWER: MAPFL MACROFL ::
EDIT 3 POWER 2540. ;
MAPFL := THERMO: MAPFL
;

GREP: FLUX :: GETVAL K-EFFECTIVE 1 >>keffInit<< ;
EVALUATE keffFin := 0.0 ;
EVALUATE deltaKeff := keffInit keffFin - ABS ;
ECHO "k-effective" keffInit ":" ;

WHILE deltaKeff 1.0E-5 >
DO
EVALUATE keffFin := keffInit ;

*-------CREATING NEW FUEL MACROLIB------------------------*
MACROFL := DELETE: MACROFL ;
MACROFL := AFM: FBMDATA MAPFL ::
   MAP
      INFOR 'SCWR_DATABASE'
      DNAME 3 'FULFBMDATA' 'FULFBMDATA' 'FULFBMDATA'
      REFT 1 'FULFBMDATA' 2 'FULFBMDATA' 3 'FULFBMDATA'
      BORON 0.0
;
*---------------------------------------------------------*
*--
*-----CREATING NEW EXTENDED MACROLIB----------------------*
MACRO2 := DELETE: MACRO2 ;
MACRO2 := INIMAC: INDEX MACRO MACROFL ;
*---------------------------------------------------------*

*------CALCULATING NEW FLUX-------------------------------*
SYSTEM FLUX := DELETE: SYSTEM FLUX ;
SYSTEM := TRIVAA: MACRO2 TRACK :: EDIT 0 ;

FLUX := FLUD: SYSTEM TRACK :: EDIT 0
;

MAPFL := FLXAXC: MAPFL FLUX TRACK INDEX ::
FLUX-AV ;

*-----CALCULATING NEW POWER----------------------------------*

MAPFL := POWER: MAPFL MACROFL ::
   EDIT 3 POWER 2540.0 ;

*-------------------------------------------------------------*

*-----CALCULATING NEW THERMODYNAMIC VALUES-------------------*

MAPFL := THERMO: MAPFL ;

*-------------------------------------------------------------*

GREP: FLUX :: GETVAL K-EFFECTIVE 1 >>keffInit<< ;

EVALUATE deltaKeff := keffInit keffFin - ABS ;
ECHO "k-effective" keffInit ":" ;
ENDWHILE ;

*--------LOCA POWER CALCULATIONS-------------------------------*

*-------------------------------------------------------------*

MAPFL := TRANS: MAPFL ;

*--------CREATING NEW FUEL MACROLIB---------------------------*

MACROFL := DELETE: MACROFL ;
MACROFL := AFM: FBMDATA MAPFL ::
   MAP
   INFOR 'SCWR_DATABASE'
   DNAME 3 'FULFBMDATA' 'FULFBMDATA' 'FULFBMDATA'
   REFT 1 'FULFBMDATA' 2 'FULFBMDATA' 3 'FULFBMDATA'
   BORON 0.0
;

*----------------------------------------------------------------*

*--
*-----CREATING NEW EXTENDED MACROLIB----------------------*
MACRO2 := DELETE: MACRO2 ;
MACRO2 := INIMAC: INDEX MACRO MACROFL ;
*---------------------------------------------------------*

*-----CALCULATING NEW FLUX-----------------------------*
SYSTEM FLUX := DELETE: SYSTEM FLUX ;
SYSTEM := TRIVAA: MACRO2 TRACK :: EDIT 0 ;

FLUX := FLUD: SYSTEM TRACK :: EDIT 0 ;

MAPFL := FLXAXC: MAPFL FLUX TRACK INDEX ::
  FLUX-AV ;

*-----CALCULATING NEW POWER-----------------------------*

MAPFL := POWER: MAPFL MACROFL ::
  EDIT 3 POWER 2540.0 ;
*---------------------------------------------------------*

* Exporter
*-----
mapfl := MAPFL ;
macrofl := MACROFL ;
END: ;
QUIT .

A.2 Procedures

A.2.1 Procedure PGeoIns4Z

*-----
* PROCEDURE: PGeoIns4Z
* USAGE: Geometrie CANDU 6 avec 4 zones de burnup
* AUTHOR: E.Varin (1996/02/01)
* **B. Dionne (2001/03/04) (pour cours ENE6209)**
* **R. Chambon (2010/03/16) (pour cours ENE6203)**
* **G. Marleau (2010/03/16) (pour cours ENE6203)**
* **P. Adouki (May 2011)**
* Appel:
* Geometrie INDEX := PGeoIns4Z :: >>Maxreg<< ;
*
*
*-----

PARAMETER Geometrie INDEX ::

::: LINKED_LIST Geometrie INDEX ; ;

MODULE END: GEOD: USPLIT: ;
LINKED_LIST GEOM ;
INTEGER Maxreg := 27700 ;
:: <<Maxreg>> ;
*-----

* Definition de la gemometrie a 3 zones
*-----

GEOM := GEOD: :: CAR3D 24 24 10

EDIT 0

X- ZERO X+ ZERO
Y- ZERO Y+ ZERO
Z- ZERO Z+ ZERO

MIX

PLANE 1

0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0
0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0
0 0 0 0 0 4 4 1 2 1 3 1 1 3 1 2 1 4 4 0 0 0 0
0 0 0 0 4 4 1 2 1 3 1 3 1 3 1 2 1 4 4 0 0 0 0
0 0 0 4 4 3 3 1 3 1 3 1 1 3 1 3 1 3 3 4 4 0 0
0 0 4 4 1 3 1 2 2 3 2 2 2 2 3 2 1 3 1 4 4 0 0
0 4 4 1 3 1 3 1 2 1 2 3 3 2 1 2 1 3 1 3 1 4 4 0
PLANE 2 SAME 1
PLANE 4 SAME 3
PLANE 5 SAME 3
PLANE 6 SAME 3
PLANE 7 SAME 3
PLANE 8 SAME 3
PLANE 9 SAME 1
PLANE 10 SAME 1

MESHX  0.0  41.9  65.375  90.375  115.375  140.375  165.375  190.375  215.375  240.375  265.375  290.375  315.375  340.375  365.375
       390.375  415.375  440.375  465.375  490.375  515.375  540.375  565.375  588.85  630.75
MESHY  0.0  41.9  65.375  90.375  115.375  140.375  165.375  190.375  215.375  240.375  265.375  290.375  315.375  340.375  365.375
       390.375  415.375  440.375  465.375  490.375  515.375  540.375  565.375  588.85  630.75
MESHZ  0.0  50.0  100.0  150.0  200.0  250.0  300.0  350.0  400.0  450.0  500.0
;
Geometrie INDEX := USPLIT: GEOM :: MAXR <--Maxreg> ;
A.2.2 Procedure Pmacfix

!***********************************************************************
!*                           ***
!* PROCEDURE:  Pmacfix       **
!* USAGE:      Macrolib construction Gentilly2 reactor from DRAGON **
!*              properties for fixed material (devices) and reflector **
!* AUTHOR:     E.Varin (96/02/12) **
!* Modified:   W. SHEN (97/10/10) **
!*             B. Dionne (01/03/04) (pour cours ENE6209) **
!*             R. Chambon (10/03/15) (pour calcul instantane 4 zones) **
!*             P.Adouki (May 2011) for Candu SCWR **
!* CALL:       **
!*              **
!* MACRO := PmacfixIns ;
!*              **
!*              **
!* NOTES:      **
!*              **
!* All the sequential ASCII files are exported COMPO files **
!* and must have the names and directory hierarchy as used **
!* in the calling to CRE: module **
!*              **
!* Check also mixture numbers with reference to geometry **
!* construction and device description **
!*              **
!************************************************************************

PARAMETER MACRO NFUEL NREFL ::
   ::: LINKED_LIST MACRO NFUEL NREFL ;

MODULE CRE: END: ;
!* Declaration des variables
!**********************
REAL B1 B2 B3 ;
:: >>B1<< >>B2<< >>B3<< ;

!* Generation des melanges (sections efficaces macroscopiques)
!*********************************************************************************************************
MACRO := CRE: NFUEL NREFL ::
    EDIT 0 NMIX 4
    READ COMPO NREFL MIX 4 'MIXTMOD 1' ENDMIX
    COMPO NFUEL MIX 1 'MELANGE 1'
        I-BURNUP <<B1>> ENDMIX
        MIX 2 'MELANGE 1'
        I-BURNUP <<B2>> ENDMIX
        MIX 3 'MELANGE 1'
        I-BURNUP <<B3>> ENDMIX
;
END: ;
QUIT "LIST" .

A.2.3 Procedure MapflInit

*************************************************************************
* Input file : MapflInit.c2m
* Purpose : Initialization of fuel map
* Author : Pierre Adouki (2011/05)
*
*  
* Note : Compatible with DONJON-3.02B  
*  
****************************************************************

PARAMETER MAPFL ::
  :::: LINKED_LIST MAPFL ; ;

MODULE INIRES: END: ;

REAL B1 B2 B3 ;

:: >>B1<< >>B2<< >>B3<< ;

MAPFL := INIRES: :: NBUND 10 NCHAN 336 NZONE 3 NGRP 2 IMOD 4
  :::: GEOD: CAR3D 24 24 10
EDIT 0
  X- ZERO  X+ ZERO
  Y- ZERO  Y+ ZERO
  Z- ZERO  Z+ ZERO

MIX

PLANE 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 3 1 1 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 3 1 3 1 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 1 3 1 3 1 1 3 1 3 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 3 1 2 2 3 2 2 2 3 2 2 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 3 1 3 1 2 1 2 3 3 2 1 2 1 3 1 3 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 1 2 2 3 1 3 3 1 1 3 3 1 3 2 2 1 3 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 3 1 3 1 3 2 1 3 3 1 2 3 1 3 1 3 1 2 0 0 0 0 0 0 0 0 0 0
0 0 1 2 1 3 1 3 2 2 2 2 2 2 2 3 1 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0
PLANE 3

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 3 1 1 3 1 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 1 3 1 3 1 3 1 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 3 3 1 3 1 3 1 3 1 3 1 3 1 3 3 0 0 0 0
0 0 0 0 1 2 1 3 1 3 1 3 1 3 1 3 1 2 1 0 0 0 0 0
0 0 0 0 0 0 0 1 2 1 3 1 3 1 3 1 3 1 3 0 0 0 0 0
0 0 0 0 0 0 1 3 1 2 3 2 2 2 2 2 2 2 1 3 1 0 0 0
0 0 0 0 0 0 0 1 3 1 2 3 2 2 2 2 2 2 2 1 3 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

0 0 2 1 3 1 3 1 3 2 1 3 3 1 2 3 1 3 1 3 1 2 0 0
0 0 0 3 1 2 2 3 1 3 3 1 1 3 3 1 3 2 2 1 3 0 0 0
0 0 0 1 3 1 3 1 2 1 2 3 3 2 1 2 1 3 1 3 1 0 0 0
0 0 0 0 1 3 1 2 2 3 2 2 2 2 3 2 2 1 3 1 0 0 0 0
0 0 0 0 0 3 3 1 3 1 3 1 1 3 1 3 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 3 1 3 3 1 3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 1 3 1 1 3 1 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PLANE 2 SAME 1
PLANE 4 SAME 3
PLANE 5 SAME 3
PLANE 6 SAME 3
PLANE 7 SAME 3
PLANE 8 SAME 3
PLANE 9 SAME 1
PLANE 10 SAME 1

MESHX 0.0 41.9 65.375 90.375 115.375 140.375 165.375 190.375 215.375 240.375 265.375 290.375 315.375 340.375 365.375 390.375 415.375 440.375 465.375 490.375 515.375 540.375 565.375 588.85 630.75
MESHY 0.0 41.9 65.375 90.375 115.375 140.375 165.375 190.375 215.375 240.375 265.375 290.375 315.375 340.375 365.375 390.375 415.375 440.375 465.375 490.375 515.375 540.375 565.375 588.85 630.75
MESHZ 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0

; 

NXNAME '1' '2' '3' '4' '5' '6' '7' '8' '9' '10' '11' '12' '13' '14' '15' '16' '17' '18' '19' '20' '21' '22' '23' '24'
NYNAME 'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' 'X'
BURNUP-ZC <<B1>> <<B2>> <<B3>>

;

MAPFL := INIRES: MAPFL ::
*WEIGHT 19.36
WEIGHT 31.61
BURN-FUEL
<<B1>> <<B2>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B2>> <<B1>> <<B1>> <<B2>> <<B1>> <<B3>> <<B1>>
<<B3>> <<B1>> <<B3>> <<B1>> <<B2>> <<B1>> <<B3>>
<<B1>> <<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B2>> <<B2>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B1>> <<B1>> <<B3>> <<B1>> <<B3>> <<B1>> <<B3>>
<<B3>> <<B1>> <<B1>> <<B2>> <<B1>> <<B3>> <<B1>>
<<B1>> <<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B1>> <<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B1>> <<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>>
<<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>> <<B3>> <<B1>>
<<B3>> <<B3>> <<B1>> <<B2>> <<B1>> <<B3>> <<B1>> <<B3>>
<<B3>> <<B1>> <<B3>> <<B1>> <<B2>> <<B1>> <<B1>> <<B2>>
<<B1>> <<B3>> <<B1>> <<B1>> <<B3>> <<B1>> <<B2>> <<B1>>

;  

END:  ;

QUIT "LIST" .
APPENDIX B

DRAGON input files for reactivity-coefficient calculations

B.1 Main input file

*DECK CalculCellule2D
*
* Nom : CalculCellule2D.x2m
* Utilisation : Fichier d’entrée pour le calcul de la cellule 2D du SCWR
* Auteur : G. Harrisson
* Date : 2011/05/02
* Modifier : Mai 2011 par P. Adouki
*

MODULE DELETE: END: PSP: ;
PROCEDURE SCWRLib1 SCWRGeo2D SCWRTrack2D EvolRefB ;
LINKED_LIST GeoAutoPro GeoFlux VolumAutoPro VolumFlux ;
XSM_FILE BiblioInt ConcIso Resultats ;
SEQ.ASCII Res.res DBRef PSGEO PSGEOAuto.ps PSGEOFlux.ps ;
SEQ.BINARY LignAutoPro LignFlux ;
REAL TCalo DCalo DCaloIsol Bundle_Power TFuel ;
EVALUATE Bundle_Power := 24.13 ;
*

*Définir les geometries de base pour le calcul de l’autoprotection des resonances et pour
*---------------------------------------------

GeoAutoPro GeoFlux := SCWRGeo2D ;
*---------------------------------------------

*Définir et analyser les geometries de calculs
*---------------------------------------------

VolumAutoPro LignAutoPro VolumFlux LignFlux := SCWRTrack2D
   GeoAutoPro GeoFlux ;

*PSGEOAuto.ps := PSP: VolumAutoPro : ;
*FILL RGB TYPE MIXTURE EDIT 0
  *;

*PSGEOFlux.ps := PSP: VolumFlux ::
*FILL RGB TYPE MIXTURE EDIT 0
  *;

*END: ;

*---------------------------------------------
EVALUATE TFuel := 1154.4 ;
EVALUATE TCalo := 876.8545 ;
EVALUATE DCalo := 0.1746768 ;
EVALUATE DCaloIsol := 0.0977856 ;

*-------------------------------
Creer la bibliotheque interne
*-------------------------------
BiblioInt := SCWRLib1 :: <<TCalo>> <<DCalo>> <<DCaloIsol>> <<TFuel>> ;

*-----------------------------------------
Calculer le flux dans la cellule unitaire
*-----------------------------------------
DBRef Resultats ConcIso BiblioInt := EvolRefB BiblioInt VolumAutoPro VolumFlux LignAutoPro LignFlux :: <<Bundle_Power>> ;

*Resultats := SCWRFlux BiblioInt VolumAutoPro LignAutoPro
  * VolumFlux LignFlux ;
  *-----------------------------------------
  *Recuperation des resultats
  *-----------------------------------------
Res.res := Resultats ;

*---------
Nettoyage
*---------
*Resultats ConcIso := DELETE: Resultats ConcIso ;
BiblioInt := DELETE: BiblioInt ;
B.2 Procedures

B.2.1 Procedure SCWRLib1

*DECK SCWRLib

-----------
*Nom : SCWRLib.c2m
*Usage : Definir les melanges de la cellule unitaire du SCWR
*Auteur : G. Harrisson
*Date : 2010/11/04
*Modifier : Mai 2011 par P. Adouki

*Description de la procedure:
*BiblioInt := SCWRLib :: <<TCalo>> <<DCalo>> <<DCaloIsol>> ;
*TCalo : Temperature du caloporteur en K
*DCalo : Densite du caloporteur en g/cm3
*DCaloIsol : Densite du caloporteur a la temperature de l'isolant en g/cm3
*BiblioInt : Bibliotheque interne requise pour les calculs

*------------------------------------------------------------------------
*Definir les structures de donnees des parametres et les modules utilises
*------------------------------------------------------------------------
PARAMETER BiblioInt :: :: XSM_FILE BiblioInt ;
MODULE INFO: LIB: DELETE: END: ;

*--------------------------------------------
*Lire les variables transmises a la procedure
*--------------------------------------------
REAL TCalo DCalo DCaloIsol TFuel ;
:: >>TCalo<< >>DCalo<< >>DCaloIsol<< >>TFuel<< ;

*Definir les variables locales
*Definir la temperature des melanges a partir de TCalo

EVALUATE TLiner := TCalo ;
EVALUATE TTubFrc := 0.3324 TCalo * 267.36 + ;
EVALUATE TGaine := 0.4989 TCalo * 480.87 + ;
EVALUATE TIsol := 0.666 TCalo * 133.73 + ;

*Definir la purete de l’eau du caloporteur et du moderateur

EVALUATE PureteCalo := 0.0156 ;
EVALUATE PureteMod := 99.833 ;

*Composition isotopique (en % massique) de l’eau du calcoporteur et du moderateur

INFO: ::
PUR: <<PureteCalo>> ATM%
LIB: WIMSD4 FIL: endfb7
ISO: 3 ’3001’ ’3002’ ’6016’
CALC WGT% D2O >>WgtH1Calo<< >>WgtD2Calo<< >>WgtO16Calo<< ;

INFO: ::
PUR: <<PureteMod>> ATM%
LIB: WIMSD4 FIL: endfb7
ISO: 3 ’3001’ ’3002’ ’6016’
CALC WGT% D2O >>WgtH1Mod<< >>WgtD2Mod<< >>WgtO16Mod<< ;

BiblioInt := LIB: ::
EDIT 0
NMIX 29 CTRA WIMS
DEPL LIB: WIMSD4 FIL: endfb7
*Definir les melanges de la cellule

*CALOPOREUR (Eau legere : 99.984 %ATM H2O & 0.0156 %ATM D2O)

MIX 1 <<TCalo>> <<DCalo>>
  H1 = '3001' <<WgtH1Calo>>
  D2 = '3002' <<WgtD2Calo>>
  O16 = '6016' <<WgtO16Calo>>

*LINER (30 % Acier inoxydable 310 et 70 % Caloporteur)

MIX 2 <<TLiner>> 7.75
  C = '2012' 0.250
  Si = '29' 1.499999
  P31 = '31' 0.045
  S = '32' 0.029999
  Mn55 = '55' 2.000
  Cr = '52' 25.000015
  Fe = '2056' 50.675132581
  Ni = '58' 19.956433

MIX 3 COMB 2 0.30 1 0.70

*ISOLANT (30 % ZrO2 et 70 % Caloporteur)

MIX 4 <<TIsol>> 5.68
  Zr = '91' 100.0026
  O16 = '6016' 35.0684

MIX 5 <<TIsol>> <<DCaloIsol>>
  H1 = '3001' <<WgtH1Calo>>
  D2 = '3002' <<WgtD2Calo>>
  O16 = '6016' <<WgtO16Calo>>
MIX 6 COMB 4 0.30 5 0.70

*TUBE DE FORCE (Alliage de Zr : Zr-2.5Nb)

*MIX 7 <<TTubFrc>> 6.515
   Nb93 = '93' 2.58
   Fe = '2056' 0.046780177764
   Cr = '52' 0.008087975736
   Ni = '58' 0.0035
   B10 = '1010' 0.00002431
   Zr = '91' 97.3132811882

*MODERATEUR (Eau lourde : 99.833 %ATM D2O & 0.167 %ATM H2O)

*MIX 8 342.16 1.08509
   H1 = '3001' <<WgtH1Mod>>
   D2 = '3002' <<WgtD2Mod>>
   O16 = '6016' <<WgtO16Mod>>
   MB10 = '1011' 1.0E-10

*GAINE (Acier inoxydable 310)

*MIX 9 <<TGaine>> 7.75
   C = '2012' 0.250
   Si = '29' 1.499999
   P31 = '31' 0.045
   S = '32' 0.029999
   Mn55 = '55' 2.000
   Cr = '52' 25.000015
   Fe = '2056' 50.675132581
   Ni = '58' 19.956433

*COMBUSTIBLE 1 (90% Thorium et 10% Plutonium recycle)

*MIX 10 <<TFuel>> 9.70
   Xe135 = '4135' 1.0E-24
Sm149 = '4149' 1.0E-24
Np239 = '1939' 1.0E-24
O16 = '6016' 13.389
Pu238 = '948' 2.5
Pu239 = '6239' 54.2
Pu240 = '1240' 23.8
Pu241 = '1241' 12.6
Pu242 = '242' 6.8

MIX 11 <<TFuel>> 9.70
Th232 = '2232' 100.0
Pa233 = '1233' 0.0
U233 = '9233' 0.0
O16 = '6016' 13.79

MIX 12 COMB 10 0.12 11 0.88
*COMBUSTIBLE 2 (90% Thorium et 10% Plutonium recycle)

MIX 13 <<TFuel>> 9.70
Xe135 = '4135' 1.0E-24
Sm149 = '4149' 1.0E-24
Np239 = '1939' 1.0E-24
O16 = '6016' 13.389
Pu238 = '948' 2.5
Pu239 = '6239' 54.2
Pu240 = '1240' 23.8
Pu241 = '1241' 12.6
Pu242 = '242' 6.8

MIX 14 <<TFuel>> 9.70
Th232 = '2232' 100.0
Pa233 = '1233' 0.0
U233 = '9233' 0.0
O16 = '6016' 13.79
MIX 15 COMB 13 0.12 14 0.88

*COMBUSTIBLE 3 (90% Thorium et 10% Plutonium recyle)

MIX 16 <<TFuel>> 9.70
Xe135 = '4135' 1.0E-24
Sm149 = '4149' 1.0E-24
Np239 = '1939' 1.0E-24
O16 = '6016' 13.389
Pu238 = '948' 2.5 3
Pu239 = '6239' 54.2 3
Pu240 = '1240' 23.8 3
Pu241 = '1241' 12.6 3
Pu242 = '242' 6.8 3

MIX 17 <<TFuel>> 9.70
Th232 = '2232' 100.0 3
Pa233 = '1233' 0.0 3
U233 = '9233' 0.0 3
O16 = '6016' 13.79

MIX 18 COMB 16 0.12 17 0.88

*COMBUSTIBLE 4 (90% Thorium et 10% Plutonium recyle)

MIX 19 <<TFuel>> 9.70
Xe135 = '4135' 1.0E-24
Sm149 = '4149' 1.0E-24
Np239 = '1939' 1.0E-24
O16 = '6016' 13.389
Pu238 = '948' 2.5 4
Pu239 = '6239' 54.2 4
Pu240 = '1240' 23.8 4
Pu241 = '1241' 12.6 4
Pu242 = '242' 6.8 4
MIX 20 <<TFuel>> 9.70
  Th232 = '2232' 100.0 4
  Pa233 = '1233' 0.0 4
  U233  = '9233' 0.0 4
  016   = '6016' 13.79

MIX 21 COMB 19 0.12 20 0.88

*COMBUSTIBLE 5 (90% Thorium et 10% Plutonium recycle)

MIX 22 <<TFuel>> 9.70
  Xe135 = '4135' 1.0E-24
  Sm149 = '4149' 1.0E-24
  Np239 = '1939' 1.0E-24
  016   = '6016' 13.389
  Pu238 = '948'  2.5  5
  Pu239 = '6239'  54.2 5
  Pu240 = '1240'  23.8 5
  Pu241 = '1241'  12.6 5
  Pu242 = '242'  6.8  5

MIX 23 <<TFuel>> 9.70
  Th232 = '2232' 100.0 5
  Pa233 = '1233' 0.0 5
  U233  = '9233' 0.0 5
  016   = '6016' 13.79

MIX 24 COMB 22 0.12 23 0.88

*COMBUSTIBLE 6 (90% Thorium et 10% Plutonium recycle)

MIX 25 <<TFuel>> 9.70
  Xe135 = '4135' 1.0E-24
  Sm149 = '4149' 1.0E-24
  Np239 = '1939' 1.0E-24
  016   = '6016' 13.389
Pu238 = '948'  2.5  6
Pu239 = '6239'  54.2  6
Pu240 = '1240'  23.8  6
Pu241 = '1241'  12.6  6
Pu242 = '242'  6.8  6

MIX 26 <<TFuel>>  9.70
   Th232 = '2232'  100.0  6
   Pa233 = '1233'  0.0  6
   U233 = '9233'  0.0  6
   O16 = '6016'  13.79

MIX 27 COMB 25 0.12 26 0.88

*PIN CENTRALE (Eau legere : 99.984 %ATM H2O & 0.0156 %ATM D20)

MIX 28 <<TCalo>> <<DCalo>>
   H1 = '3001' <<WgtH1Calo>>
   D2 = '3002' <<WgtD2Calo>>
   O16 = '6016' <<WgtO16Calo>>

*Gaine PIN CENTRALE (Acier inoxydable 310)

MIX 29 <<TGaine>>  7.75
   C = '2012'  0.250
   Si = '29'  1.499999
   P31 = '31'  0.045
   S = '32'  0.029999
   Mn55 = '55'  2.000
   Cr = '52'  25.000015
   Fe = '2056'  50.675132581
   Ni = '58'  19.956433

END: ;
QUIT "LIST" .
B.2.2 Procedure SCWRGeo2D

*DECK SCWRGeo2D

*------------------
* Nom : SCWRGeo2D.c2m
* Usage : Definir les geometries 2D du SCWR pour le calcul de l’autoprotection des resonances
* Geometrie a 54 crayons de combustible
* Auteur : G. Harrisson
* Date : 2010/11/18
* Modifier : 2011/02/07

*Description de la procedure:
*GeoAutoPro GeoFlux := SCWRGeo ;
*GeoAutoPro : Geometrie pour le calcul de l’autoprotection des resonances
*GeoFlux : Geometrie pour le calcul du flux

*Definir les structures de donnees des parametres et les modules utilise
*------------------------------------------------------------------------
PARAMETER GeoAutoPro GeoFlux :: :: LINKED_LIST GeoAutoPro GeoFlux ; ;
MODULE GEO: END: ;

*Geometrie pour le calcul de l’autoprotection des resonances
*------------------------------------------------------------------------
GeoAutoPro := GEO: :: CARCEL 8 3 3
EDIT 0
  X- REFL MESHX -12.5 -8.4853 8.4853 12.5 X+ REFL
  Y- REFL MESHY -12.5 -8.4853 8.4853 12.5 Y+ REFL
  RADIUS 0.00000 2.10480 3.60300 5.06525 6.80000 6.90000
           8.23000 9.63000 12.00000
  MIX 1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
        1 1 1 1 3 6 7 8 8
CLUSTER ROD1 ROD2 ROD3 ROD4

::: ROD1 := GEO: TUBE 2
RADIUS 0.000 1.800 2.000
MIX 28 29
NPIN 1 RPIN 0.0000 APIN 0.0000 ;
::: ROD2 := GEO: TUBE 2 1 2
RADIUS 0.000 0.620 0.660
MESHX -0.660 0.660
MESHY -0.660 0.000 0.660
MIX 12 9 15 9
NPIN 12 RPIN 2.8755 APIN 0.2618 ;
::: ROD3 := GEO: TUBE 2 1 2
RADIUS 0.000 0.620 0.660
MESHX -0.660 0.660
MESHY -0.660 0.000 0.660
MIX 18 9 21 9
NPIN 18 RPIN 4.3305 APIN 0.1745 ;
::: ROD4 := GEO: TUBE 2 1 2
RADIUS 0.000 0.620 0.660
MESHX -0.660 0.660
MESHY -0.660 0.000 0.660
MIX 24 9 27 9
NPIN 24 RPIN 5.8000 APIN 0.1309 ;

*--------------------------------
*Geometrie pour le calcul du flux
*--------------------------------

GeoFlux := GEO: GeoAutoPro :: SPLITR 1 21 21 21 1 14 3 7
SPLITX 4 1 4
SPLITY 4 1 4

::: ROD1 := GEO: ROD1 SPLITR 1 1 ;
::: ROD2 := GEO: ROD2 SPLITR 4 1 ;
::: ROD3 := GEO: ROD3 SPLITR 4 1 ;
::: ROD4 := GEO: ROD4 SPLITR 4 1 ;

END: ;
QUIT "LIST" .
B.2.3 Procedure SCWRTrack2D

*DECK SCWRTrack2D

*----------------
* Nom : SCWRTrack2D.c2m
* Utilisation : Definir et analyser les geometries de calculs
* Auteur : G. Harrisson
* Date : 2011/02/07
*
*Description de la procedure:
*VolumAutoPro LignAutoPro VolumFlux LignFlux := SCWRTrack2D GeoAutoPro GeoFlux ;
*VolumAutoPro : Fichier de tracking de la geometrie de calcul pour l’autoprotection des resonances
*LignAutoPro : Fichier de lignes d’integration de la geometrie de calcul pour l’autoprotection des resonances
*VolumFlux : Fichier de tracking de la geometrie de calcul pour le flux
*LignFlux : Fichier de lignes d’integration de la geometrie de calcul pour le flux
*GeoAutoPro : Geometrie de base pour le calcul de l’autoprotection des resonances
*GeoFlux : Geometrie de base pour le calcul du flux
*
*------------------------------------------------------------------------
*Definir les structures de donnees des parametres et les modules utilises
*------------------------------------------------------------------------
PARAMETER VolumAutoPro LignAutoPro VolumFlux LignFlux
GeoAutoPro GeoFlux :
::: LINKED_LIST VolumAutoPro VolumFlux GeoAutoPro GeoFlux ;
::: SEQ_BINARY LignAutoPro LignFlux ;
MODULE NXT: DELETE: END: ;

*------------------------------------------------------------------------
*Analyser et tracker les geometries de base
*------------------------------------------------------------------------
VolumAutoPro LignAutoPro := NXT: GeoAutoPro :: EDIT 10 TISO 20 20.0 ;
VolumFlux LignFlux := NXT: GeoFlux :: EDIT 10 TISO 20 35.0 ;

END: ;
QUIT "LIST" .
B.2.4 EvolRefB

*DECK EvolRefB

*----------
* Nom : EvolRefB.c2m
* Usage : Resoudre pour les flux, evoluer et generer le fichier de resultats dependant du burnup
* Auteur : G. Harrisson
* Date : 2009/11/24
*
* Description de la procedure:
*
* EditDS ConcIso := EvolRefB MicLib TrackingS TrackingF IntlineS IntlineF :
  <<Puissance>> >>NbEtapes<< ;
*
* MicLib : Microlib requise pour calcul
* Puissance : Puissance specifique de grappe en kW/kg
* NbEtapes : Nombre d'etapes d'evolution
* EditDS : Fichier de resultats
* ConcIso : Concentration isotopiques en fonction du temps
*
*----------
* Definir les structures de donnees des parametres
*----------
PARAMETER DBRef EditDS ConcIso MicLib TrackingS TrackingF
  IntlineS IntlineF :
    ::: SEQ_ASCII DBRef ;
    ::: XSM_FILE EditDS ConcIso MicLib ;
    ::: LINKED_LIST TrackingS TrackingF ;
    ::: SEQ_BINARY IntlineS IntlineF ; ;
*
*----------
* Recuperer l'information transferee a la procedure
*----------
REAL Puissance ;
INTEGER NbEtapes ;
:: >>Puissance<< ;
ECHO "Puissance specifique de grappe =" Puissance "kW/kg" ;
*----------
* Modules et structures de données et variables

-------

MODULE SHI: ASM: FLU: EDI: EVO:
    GREP: DELETE: CPO:

LINKED_LIST TmpMicLib CPODB;

XSM_FILE PIJ Flux;

REAL keff;

INTEGER FinEvo := 0;

REAL klower := 0.98;

REAL iBurn := 0.;

REAL DBURN := 12.5;

REAL Delt := DBURN Puissance /;

-------

* 1er Calcul de flux complet
* 1) Auto-protection
* 2) Assemblage
* 3) Calcul de flux
* 4) Edition

-------

TmpMicLib := MicLib;

EVALUATE NbEtapes := 1;

TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0;

PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0;

Flux := FLU: PIJ TmpMicLib TrackingF :: TYPE K;

EditDS := EDI: Flux TmpMicLib TrackingF :: EDIT 4
          COND 0.625 MERG COMP SAVE;

PIJ := DELETE: PIJ;

-------

* Boucle d'évolution

-------

WHILE FinEvo 1 < DO

    IF iBurn 0. = THEN
        ConcIso TmpMicLib := EVO: TmpMicLib Flux TrackingF ::
        DEPL <<Delt>> DAY POWR <<Puissance>>;
    ELSE
        ConcIso TmpMicLib := EVO: ConcIso TmpMicLib Flux TrackingF ::
DEPL <<Delt>>  DAY POWR <<Puissance>> ;  
ENDIF ;  
EVALUATE iBurn := iBurn DBURN + ;  
*----------  
* Calcul de flux complet pour différentes étapes d'évolution  
* 1) Auto-protection  
* 2) Assemblage  
* 3) Calcul de flux  
* 4) Edition  
*----------  
TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0 ;  
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;  
Flux := FLU: Flux PIJ TmpMicLib TrackingF :: TYPE K ;  
EditDS := EDI: EditDS Flux TmpMicLib TrackingF :: EDIT 4  
    COND 0.625 MERG COMP SAVE ;  
PIJ := DELETE: PIJ ;  
*----------  
* Changer Delta t lorsque requis  
*----------  
IF iBurn 150. = THEN  
    EVALUATE DBURN := 25. ;  
    EVALUATE Delt := DBURN Puissance / ;  
ELSEIF iBurn 250. = THEN  
    EVALUATE DBURN := 50. ;  
    EVALUATE Delt := DBURN Puissance / ;  
ELSEIF iBurn 500. = THEN  
    EVALUATE DBURN := 100. ;  
    EVALUATE Delt := DBURN Puissance / ;  
ELSEIF iBurn 1000. = THEN  
    EVALUATE DBURN := 200. ;  
    EVALUATE Delt := DBURN Puissance / ;  
ELSEIF iBurn 2000. = THEN  
    EVALUATE DBURN := 500. ;  
    EVALUATE Delt := DBURN Puissance / ;  
ELSEIF iBurn 4000. = THEN  
    EVALUATE DBURN := 1000. ;
EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 6000. = THEN
    EVALUATE DBURN := 2000. ;
    EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 10000. = THEN
    EVALUATE DBURN := 5000. ;
    EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 30000. = THEN
    EVALUATE DBURN := 10000. ;
    EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 40000. = THEN
    EVALUATE DBURN := 20000. ;
    EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 60000. = THEN
    EVALUATE DBURN := 20000. ;
    EVALUATE Delt := DBURN Puissance / ;
ELSEIF iBurn 80000. = THEN
    EVALUATE DBURN := 20000. ;
    EVALUATE Delt := DBURN Puissance / ;
ENDIF ;

******
* Verifier si keff < klower
******
* GREP: Flux :: GETVAL 'K-EFFECTIVE' 1 >>keff<< ;
* ECHO "k-eff =" keff ;
! IF keff klower < THEN
! EVALUATE FinEvo := 1 ;
! ENDIF ;
IF iBurn 0. > THEN
    EVALUATE FinEvo := 1 ;
ENDIF ;
ENDWHILE ;

CPODB := CPO: ConcIso EditDS ::
BURNUP REF-CASE
* EXTRACT Xe135  Xe135  
* EXTRACT Sm149  Sm149  
* EXTRACT Np239  Np239  
  NAME MELANGE  ;  
  DBRef := CPODB  ;  

*----------  
* Nettoyer  
*----------  
Flux TmpMicLib := DELETE: Flux TmpMicLib ;  
*----------  
* Retourner nombre de calculs  
*----------  

QUIT .
APPENDIX C

DRAGON input files for database generation

C.1 Main input files

C.1.1 File RefG2.x2m

*DECK RefG2.x2m
*----
* Nom : RefG2.x2m
* Type : DRAGON input file
* Usage : Reference G2 calculations
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
*
*----
* Modules and procedures
*----
MODULE DELETE: END: ;
PROCEDURE GeoG2 MicG2IAEA EvoG2Ref CpoG2 ;
*----
* Data structures
*----
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib EditPu ;
SEQ_ASCII EditRef.exp ConcIso.exp MicLib.exp
CPMREF.exp MLDREF.exp ;
*----
* Definition of the data for the procedures
* and initialisation of the default values
*----
STRING Option ;
REAL TComb TCalo TMode DCalo
DMode  PCalo  PMode  Bore
Xe    Sm    Np    DCaloIsol :=
1273.15 923.15 342.16 0.35
1.08509 0.0156 99.833 1.0E-10
1.0E-24 1.0E-24 1.0E-24 0.0977856 ;
INTEGER NbEtapes := 3 ;
REAL   Puissance MaxBurn := 24.13 25000.0 ;
*-----
*   Self shielding geometry
*-----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;
*-----
*   Flux calculation geometry
*-----
EVALUATE Option := "Flux" ;
TrackF LinesF := GeoG2 :: <<Option>> ;
*-----
*   Cross section library
*-----
MicLib := MicG2IAEA ::
   <<TComb>> <<TCalo>> <<TMode>>
   <<DCalo>> <<DMode>> <<PCalo>>
   <<PMode>> <<Bore>> <<Xe>>
   <<Sm>> <<Np>> <<DCaloIsol>> ;
*-----
*   Reference burnup calculation
*-----
EditDS ConcIso := EvoG2Ref MicLib TrackS TrackF
   LinesS LinesF ::
   <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
EditRef.exp := EditDS ;
ConcIso.exp := ConcIso ;
MicLib.exp := MicLib ;
STRING NomDB NomEdit := "REF" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
C.1.2 File CFC.x2m

*-----------------------CFC.x2m-------------------------------*

* DRAGON CPO files for reference and
* perturbed calculation
*-----------------------

SEQ_ASCII CPMREF.exp CPMBM.exp CPMXE5.exp CPMTF1.exp
CPMTF2.exp CPMTC1.exp CPMTC2.exp CPMTM1.exp
CPMTM2.exp CPMDC1.exp CPMDC2.exp CPMDM1.exp
CPMDM2.exp CPMSM9.exp CPMP9.exp CPMP1.exp
CPMP2.exp CPMPM.exp CPMPHPI.exp CPMPHD.exp
CPMPHPU.exp MLDREF.exp MLDBM.exp MLDTM1.exp
MLDTM2.exp MLDDM1.exp MLDDM2.exp MLDPM.exp ;
XSM_FILE CPMREFXSM CPMBORXSM CPMXENXSM CPMT1FXSM CPMT2FXSM
CPMT1CXSM CPMT2CXSM CPMT1MXSM CPMT2MXSM CPMD1CXSM
CPMD2CXSM CPMD1MXSM CPMD2MXSM CPMSM1XSM CPMNP9XSM
CPMMFDXSM CPMMMDXSM CPMPURXSM CPMHP3XSM CPMHPDXSM
CPMHPUXSM MLDREFXSM MLDB0RXSM MLDT1MXSM MLDT2MXSM
MLDD1MXSM MLDD2MXSM MLDPURXSM EDIDAT ;

*-----
* Dragon modules used
*-----

MODULE CFC: END: DELETE: ;

*-----
* Import CPO ASCII files XSM format for DRAGON processing
*-----

CPMREFXSM := CPMREF.exp ;
CPMBORXSM := CPMBM.exp ;
CPMXENXSM := CPMXE5.exp ;
CPMT1FXSM := CPMTF1.exp ;
CPMT2FXSM := CPMTF2.exp ;
CPMT1CXSM := CPMTC1.exp ;
CPMT2CXSM := CPMTC2.exp ;
CPMT1MXSM := CPMTM1.exp ;
CPMT2MXSM := CPMTM2.exp ;
CPMD1CXSM := CPMDC1.exp ;
CPMD2CXSM := CPMDC2.exp ;
CPMD1MXSM := CPMDM1.exp ;
CPMD2MXSM := CPMDM2.exp ;
CPMSM1XSM := CPMSM9.exp ;
CPMNP9XSM := CPMNP9.exp ;
CPMMFDXSM := CPMCP1.exp ;
CPMMMDXSM := CPMCP2.exp ;
CPMPURXSM := CPMPM.exp ;
CPMHP3XSM := CPMHPI.exp ;
CPMHPDXSM := CPMHPD.exp ;
CPMHPUXSM := CPMHPU.exp ;
MLDREFXSM := MLDREF.exp ;
MLDB0RXSM := MLDBM.exp ;
MLDT1MXSM := MLDTM1.exp ;
MLDT2MXSM := MLDTM2.exp ;
MLDD1MXSM := MLDDM1.exp ;
MLDD2MXSM := MLDDM2.exp ;
MLDPURXSM := MLDPM.exp ;

*-----
* Generate FBM database
*-----

EDIDAT := CFC: CPMREFXSM CPMT1FXSM CPMT2FXSM CPMT1CXSM
        CPMT2CXSM CPMT1MXSM CPMT2MXSM CPMD1CXSM
        CPMD2CXSM CPMD1MXSM CPMD2MXSM CPMBORXSM
        CPMPURXSM CPMXENXSM CPMSM1XSM CPMNP9XSM
        CPMMFDXSM CPMMMDXSM CPMPUXSM CPMPHP3XSM
        CPMPHPDXSM MLRREFXSM MLDT1MXSM MLDT2MXSM
        MLDD1MXSM MLDD2MXSM MLDBORXSM MLDPURXSM ::

INFOR SCWR_DATABASE DNAME FBMDATA
PWR 755.95 2000.0 500.0 30.0
TCOOL 923.15 1473.15 573.15
TMODE 342.16 372.16 292.16
TFUEL 1273.15 1773.15 773.15
XIR 1.0E-24 2.0E-9
RHOM 1.08509
RHO0 0.35

; *-----
* Export FBM database in ASCII format
*-----

FBMDAT := EDIDAT ;

*-----
* Clean up
*-----

CPMREFXSM CPMBORXSM CPMXENXSM CPMT1FXSM CPMT2FXSM
CPMT1CXSM CPMT2CXSM CPMT1MXSM CPMT2MXSM CPMD1CXSM
CPMD2CXSM CPMD1MXSM CPMD2MXSM CPMSM1XSM CPMNP9XSM
CPMMFDXSM CPMMMDXSM CPMPUXSM CPMPHP3XSM CPMPHPDXSM
C.1.3 File PerG2BM.x2m

*DECK PerG2BM.x2m

*-----
* Nom : PerG2BM.x2m
* Type : DRAGON input file
* Usage : G2 perturbative calculations
          for moderator boron BM
* Auteur : G. Marleau
          P. Adouki (Summer 2011)
*-----
* Modules ond procedures
*-----
PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;
*-----
* Data structures
*-----
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditBM.exp
    CPMBM.exp
    MLDBM.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;

*----
* Definition of the data for the procedures
* and initialisation of the default values
*----
STRING Option ;

REAL TComb TCalo TMode DCalo
DMode PCalo PMode Bore
Xe Sm Np DCaloIsol :=
1273.15 923.15 342.16 0.35
1.08509 0.0156 99.833 1.0E-10
1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1. -1. -1. ;
STRING NomDB NomEdit ;

*----
* Get number of burnup steps from ConcIso
*----
GREP: ConcIso ::
GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;

*----
* Self shielding geometry
*----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;

*----
* Flux calculation geometry
*----
EVALUATE Option := "Flux" ;
TrackF LinesF := GeoG2 :: <<Option>> ;

*----
* Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;
*----
*  Perturb moderator boron
*----
EVALUATE Bore := 0.0 ;
MicLib := MicG2IAEA ::
<<TComb>> <<TCalo>> <<TMode>>
<<DCalo>> <<DMode>> <<PCalo>>
<<PMode>> <<Bore>> <<Xe>>
<<Sm>>   <<Np>>   <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
           LinesS LinesF ::
<<NbEtapes>>
<<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditBM.exp := EditDS ;
EVALUATE NomDB NomEdit := "BORON" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
<<NomDB>> <<NomEdit>> ;
CPMBM.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EVALUATE NomDB NomEdit := "MODBOR" "Reflect" ;
CpoDS := CpoG2 EditDS ConcIso ::
<<NomDB>> <<NomEdit>> ;
MLDBM.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS MicLib := DELETE: EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.1.4 File PerG2CMB.x2m

*DECK PerG2CMB.x2m
*----
*  Nom     : PerG2CMB.x2m
*  Type     : DRAGON input file
*  Usage    : G2 cpmbined perturbative calculations
for TF/DC and TC/DC

Auteur : G. Marleau
P. Adouki (Summer 2011)

* Modules ond procedures

PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;

* Data structures

LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditCP1.exp EditCP2.exp
   CPMCP1.exp CPMCP2.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;

* Definition of the data for the procedures
* and initialisation of the default values

STRING Option ;

REAL TComb TCalo TMode DCalo
   DMode PCalo PMode Bore
   Xe Sm Np DCaloIsol :=
   1273.15 923.15 342.16 0.35
   1.08509 0.0156 99.833 1.0E-10
   1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0 ;
STRING NomDB NomEdit ;
*----
* Get number of burnup steps from ConcIso
*----
GREP: ConcIso ::
   GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;
*----
* Self shielding geometry
*----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;
*----
* Flux calculation geometry
*----
EVALUATE Option := "Flux" ;
TrackF LinesF := GeoG2 :: <<Option>> ;
*----
* Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;
*----
* Perturb TF/DC
*----
EVALUATE TComb TCalo := Ftemp 500.0 + Ctemp ;
EVALUATE DCalo := 0.0001 ;

MicLib := MicG2IAEA ::
   <<TComb>> <<TCalo>> <<TMode>>
   <<DCalo>> <<DMode>> <<PCalo>>
   <<PMode>> <<Bore>> <<Xe>>
   <<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
   LinesS LinesF ::
      <<NbEtapes>>
      <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditCP1.exp := EditDS ;
EVALUATE NomDB NomEdit := "MIXFD" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
   <<NomDB>> <<NomEdit>> ;
CPMCP1.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
*----
* Perturb TC/DC
*----
EVALUATE TComb TCalo := Ftemp Ctemp 550.0 + ;
EVALUATE DCalo := 0.0001 ;

MicLib := MicG2IAEA ::
   <<TComb>> <<TCalo>> <<TMode>>
   <<DCalo>> <<DMode>> <<PCalo>>
   <<PMode>> <<Bore>> <<Xe>>
   <<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
   LinesS LinesF ::
   <<NbEtapes>>
   <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditCP2.exp := EditDS ;
EVALUATE NomDB NomEdit := "MIXMD" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
   <<NomDB>> <<NomEdit>> ;
CPMCP2.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.1.5 File PerG2DM.x2m

*DECK PerG2DC.x2m
*----
* Nom     : PerG2DM.x2m
* Type    : DRAGON input file
* Usage : G2 perturbative calculations
* for coolant density DC
* Auteur : G. Marleau
* P. Adouki (Summer 2011)

*-----
* Modules and procedures
*-----
PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;

*-----
* Data structures
*-----
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditDC1.exp EditDC2.exp
    CPMDC1.exp CPMDC2.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;

*-----
* Definition of the data for the procedures
* and initialisation of the default values
*-----
STRING Option ;

REAL TComb TCalo TMode DCalo
DMode PCalo PMode Bore
Xe Sm Np DCaloIsol :=
1273.15 923.15 342.16 0.35
1.08509 0.0156 99.833 1.0E-10
1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0 ;
STRING NomDB NomEdit;

*-----
* Get number of burnup steps from ConcIso
*-----
GREP: ConcIso::
  GETVAL 'STATE-VECTOR' 3 >>NbEtapes<<;

*-----
* Self shielding geometry
*-----
EVALUATE Option := "Shield";
TrackS LinesS := GeoG2::<<Option>>;

*-----
* Flux calculation geometry
*-----
EVALUATE Option := "Flux";
TrackF LinesF := GeoG2::<<Option>>;

*-----
* Reference library parameters
*-----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15;

*-----
* Perturb moderator density to 0.0001
*-----
*EVALUATE DCalo := 0.03;
EVALUATE DCalo := 0.0001;

MicLib := MicG2IAEA::
  <<TComb>> <<TCalo>> <<TMode>>
  <<DCalo>> <<DMode>> <<PCalo>>
  <<PMode>> <<Bore>> <<Xe>>
  <<Sm>> <<Np>> <<DCaloIsol>>;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
          LinesS LinesF::
<<NbEtapes>>
<<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditDC1.exp := EditDS ;
EVALUATE NomDB NomEdit := "CDEN-D" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMD1.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS MicLib := DELETE: EditDS MicLib ;
*----
* Perturb moderator density to 0.7
*----
EVALUATE DCalo := 0.7 ;
MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>> <<Np>> <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
    LinesS LinesF ::
        <<NbEtapes>>
        <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditDC2.exp := EditDS ;
EVALUATE NomDB NomEdit := "CDEN-UP" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMD1.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS MicLib := DELETE: EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .
C.1.6 File PerG2IF.x2m

*DECK PerG2IF.x2m

*----
* Nom : PerG2IF.x2m
* Type : DRAGON input file
* Usage : G2 perturbative calculations
* for fuel isotopes perturbations
* (Xe-135, Sm-149 and Np-239).
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
*----
* Modules ond procedures
*----
PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;
*----
* Data structures
*----
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp temp ;
SEQ_ASCII EditXE5.exp EditSM9.exp EditNP9.exp
 CPMXE5.exp CPMSM9.exp CPMNP9.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;
*----
* Definition of the data for the procedures
* and initialisation of the default values
*----
STRING Option ;

REAL TComb TCalo TMode DCalo
 DMode PCalo PMode Bore
Xe Sm Np DCaloIsol :=
1273.15 923.15 342.16 0.35
INTEGER NbEtapes;
REAL Puissance MaxBurn := 24.13 25000.0;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0;
STRING NomDB NomEdit;
*----
* Get number of burnup steps from ConcIso
*----
GREP: ConcIso ::
GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;
*----
* Self shielding geometry
*----
EVALUATE Option := "Shield";
TrackS LinesS := GeoG2 :: <<Option>> ;
*----
* Flux calculation geometry
*----
EVALUATE Option := "Flux";
TrackF LinesF := GeoG2 :: <<Option>> ;
*----
* Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;
*----
* Perturb Xenon 135
*----
EVALUATE ChangXe ChangSm ChangNp := 2.0E-9 -1.0 -1.0 ;

MicLib := MicG2IAEA ::
<<TComb>> <<TCalo>> <<TMode>>
<<DCalo>> <<DMode>> <<PCalo>>
<<PMode>> <<Bore>> <<Xe>>
<<Sm>> <<Np>> <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
    LinesS LinesF ::
    <<NbEtapes>>
    <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditXE5.exp := EditDS ;
EVALUATE    NomDB NomEdit := "XENON" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMXE5.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
*----
* Perturb Sm-149
*----
EVALUATE ChangXe ChangSm ChangNp := -1.0 7.0E-8 -1.0 ;

MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>>    <<Np>>    <<DCaloIsol>> ;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
    LinesS LinesF ::
    <<NbEtapes>>
    <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditSM9.exp := EditDS ;
EVALUATE    NomDB NomEdit := "SM149" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMSM9.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
*----
* Perturb Np-239
*----
EVALUATE ChangXe ChangSm ChangNp := -1.0 -1.0 3.0E-12 ;
MicLib := MicG2IAEA ::
<<TComb>> <<TCalo>> <<TMode>>
<<DCalo>> <<DMode>> <<PCalo>>
<<PMode>> <<Bore>> <<Xe>>
<<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
             LinesS LinesF ::
<<NbEtapes>>
<<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditNP9.exp := EditDS ;
EVALUATE NomDB NomEdit := "NP239" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
<<NomDB>> <<NomEdit>> ;
CPMN9.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.1.7 File PerG2PM.x2m

*DECK PerG2PM.x2m
*----
* Nom    : PerG2PM.x2m
* Type   : DRAGON input file
* Usage  : G2 perturbative calculations
*        : for moderator purity PM
* Auteur : G. Marleau
*        : P. Adouki (Summer 2011)
*----
* Modules ond procedures
*----
PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;
*----
* Data structures

**----**

LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditPM.exp
   CPMPM.exp
   MLDPM.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;
**----**
* Definition of the data for the procedures
* and initialisation of the default values
**----**

STRING Option ;

REAL TComb TCalo TMode DCalo
   DMode PCalo PMode Bore
   Xe Sm Np DCaloIsol :=
   1273.15 923.15 342.16 0.35
   1.08509 0.0156 99.833 1.0E-10
   1.0E-24 1.0E-24 1.0E-24 0.0977856 ;
MicLib := MicG2IAEA ::
  <<TComb>> <<TCalo>> <<TMode>>
  <<DCalo>> <<DMode>> <<PCalo>>
  <<PMode>> <<Bore>> <<Xe>>
  <<Sm>> <<Np>> <<DCaloIsol>> ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0 ;
STRING NomDB NomEdit ;
**----**
* Get number of burnup steps from ConcIso
**----**
GREP: ConcIso ::
    GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;

*----
* Self shielding geometry
*----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;

*----
* Flux calculation geometry
*----
EVALUATE Option := "Flux" ;

TrackF LinesF := GeoG2 :: <<Option>> ;

*----
* Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;

*----
* Perturb moderator boron
*----
EVALUATE PMode := 98.5 ;

MicLib := DELETE: MicLib ;

MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
    LinesS LinesF ::
    <<NbEtapes>>
    <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditPM.exp := EditDS ;
EVALUATE NomDB NomEdit := "PURITY" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
  <<NomDB>> <<NomEdit>> ;
CPMPM.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EVALUATE NomDB NomEdit := "MODPUR" "Reflect" ;
CpoDS := CpoG2 EditDS ConcIso ::
  <<NomDB>> <<NomEdit>> ;
MLDPM.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS MicLib := DELETE: EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.1.8 File PerPowG2.x2m

*DECK PerPowG2.x2m

*---
* Nom : PerPowG2.x2m
* Type : DRAGON input file
* Usage : Power perturbations for G2 calculations
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
*---
* Modules and procedures
*---
MODULE DELETE: END: ;
PROCEDURE GeoG2 MicG2IAEA EvoG2Ref CpoG2 EvoG2Pui ;
*---
* Data structures
*---
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib EditPu ;
SEQ_ASCII EditPw1.exp EditPw2.exp EditPw3.exp
  CIPw1.exp CIPw2.exp CIPw3.exp
  CPMHPD.exp CPMHPU.exp CPMHPI.exp ;
*----
* Definition of the data for the procedures
* and initialisation of the default values
*----

STRING Option ;

REAL TComb TCalo TMode DCalo
DMode PCalo PMode Bore
Xe Sm Np DCaloIsol :=
1273.15 923.15 342.16 0.35
1.08509 0.0156 99.833 1.0E-10
1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes := 3 ;
REAL RefPower MaxBurn := 24.13 25000.0 ;
REAL Puissance ;
*----
* Self shielding geometry
*----

EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;

*----
* Flux calculation geometry
*----

EVALUATE Option := "Flux" ;
EVALUATE Option := "Flux" ;
TrackF LinesF := GeoG2 :: <<Option>> ;

*----
* Perturbed burnup calculation
*----

EVALUATE Puissance := 0.9576 ;
MicLib := MicG2IAEA ::
<<TComb>> <<TCalo>> <<TMode>>
<<DCalo>> <<DMode>> <<PCalo>>
<<PMode>> <<Bore>> <<Xe>>
<<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS ConcIso := EvoG2Pui MicLib TrackS TrackF LinesS LinesF ::
<<RefPower>> <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
EditPw1.exp := EditDS ;
CIPw1.exp := ConcIso ;
STRING NomDB NomEdit := "POWER-D" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
<<NomDB>> <<NomEdit>> ;
CPMHPD.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS ConcIso MicLib := DELETE: EditDS ConcIso MicLib ;
*----
* Perturbed burnup calculation
*----
EVALUATE Puissance := 63.84 ;

MicLib := MicG2IAEA ::
<<TComb>> <<TCalo>> <<TMode>>
<<DCalo>> <<DMode>> <<PCalo>>
<<PMode>> <<Bore>> <<Xe>>
<<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS ConcIso := EvoG2Pui MicLib TrackS TrackF LinesS LinesF ::
<<RefPower>> <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
EditPw2.exp := EditDS ;
CIPw2.exp := ConcIso ;
EVALUATE NomDB NomEdit := "POWER-UP" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
<<NomDB>> <<NomEdit>> ;
CPMHPU.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS ConcIso MicLib := DELETE: EditDS ConcIso MicLib ;
-----
* Perturbed burnup calculation
-----
EVALUATE Puissance := 15.96 ;

MicLib := MicG2IAEA ::
  <<TComb>> <<TCalo>> <<TMode>>
  <<DCalo>> <<DMode>> <<PCalo>>
  <<PMode>> <<Bore>> <<Xe>>
  <<Sm>> <<Np>> <<DCaloIsol>> ;

EditDS ConcIso := EvoG2Pui MicLib TrackS TrackF
  LinesS LinesF ::
    <<RefPower>> <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
EditPw3.exp := EditDS ;
CIPw3.exp := ConcIso ;
EVALUATE NomDB NomEdit := "POWER-IN" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso :
  <<NomDB>> <<NomEdit>> ;
CPMHPI.exp := CpoDS ;
CpoDS := DELETE: CpoDS ;
EditDS ConcIso MicLib := DELETE: EditDS ConcIso MicLib ;
TrackS TrackF LinesS LinesF := DELETE:
  TrackS TrackF LinesS LinesF ;
END: ;
QUIT "LIST" .

C.1.9 File PerG2TC.x2m

*DECK PerG2TC.x2m
*-----
* Nom : PerG2TC.x2m
* Type : DRAGON input file
* Usage : G2 perturbative calculations
for coolant temperature TC

* Auteur : G. Marleau
* P. Adouki (Summer 2011)

* Modules ond procedures

PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;

* Data structures

LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditTC1.exp EditTC2.exp
CPMTC1.exp CPMTC2.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;

* Definition of the data for the procedures
* and initialisation of the default values

STRING Option ;

REAL TComb TCalo TMode DCalo
 DMode PCalo PMode Bore
 Xe Sm Np DCaloIsol :=
1273.15 923.15 342.16 0.35
1.08509 0.0156 99.833 1.0E-10
1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0 ;
STRING NomDB NomEdit ;

*----
* Get number of burnup steps from ConcIso
*----
GREP: ConcIso ::
    GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;
*----
* Self shielding geometry
*----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 :: <<Option>> ;
*----
* Flux calculation geometry
*----
EVALUATE Option := "Flux" ;
TrackF LinesF := GeoG2 :: <<Option>> ;
*----
* Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;
*----
* Perturb coolant temperature by + 550.0
*----
EVALUATE TCalo := Ctemp 550.0 + ;
MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>> <<Np>> <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF LinesS LinesF ::
    <<NbEtapes>>
    <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditTC1.exp := EditDS ;
EVALUATE NomDB NomEdit := "CTEMP-UP" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMTC1.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
*----
*    Perturb coolant temperature by - 350.0
*----
EVALUATE TCalo := Ctemp 350.0 - ;
MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>> <<Np>> <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
    LinesS LinesF ::
        <<NbEtapes>>
        <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditTC2.exp := EditDS ;
EVALUATE NomDB NomEdit := "CTEMP-D" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
    <<NomDB>> <<NomEdit>> ;
CPMTC2.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.1.10 File PerG2TF.x2m

*DECK PerG2TF.x2m
*----
* Nom       : PerG2TF.x2m
* Type      : DRAGON input file
* Usage     : G2 perturbative calculations
*           : for fuel temperature TF
* Auteur    : G. Marleau
*           : P. Adouki (Summer 2011)
*----
* Modules ond procedures
*----
PROCEDURE GeoG2 MicG2IAEA EvoG2Per CpoG2 ;
*----
* Data structures
*----
LINKED_LIST TrackS TrackF Geometrie EditTmp ;
SEQ_BINARY LinesS LinesF ;
XSM_FILE CpoDS Flux EditDS ConcIso EditRef MicLib ;
SEQ_ASCII EditRef.exp ConcIso.exp ;
SEQ_ASCII EditTF1.exp EditTF2.exp
   CPMTF1.exp CPMTF2.exp ;
EditRef := EditRef.exp ;
ConcIso := ConcIso.exp ;
*----
* Definition of the data for the procedures
* and initialisation of the default values
*----
STRING Option ;

REAL TComb TCalo TMode DCalo
   DMode PCalo PMode Bore
   Xe Sm Np DCaloIsol :=
   1273.15 923.15 342.16 0.35
   1.08509 0.0156 99.833 1.0E-10
   1.0E-24 1.0E-24 1.0E-24 0.0977856 ;

INTEGER NbEtapes ;
REAL Puissance MaxBurn := 24.13 25000.0 ;
REAL ChangXe ChangSm ChangNp := -1.0 -1.0 -1.0 ;
STRING NomDB NomEdit ;
*----
* Get number of burnup steps from ConcIso
*----
GREP: ConcIso ::
   GETVAL 'STATE-VECTOR' 3 >>NbEtapes<< ;
*----
*  Self shielding geometry
*----
EVALUATE Option := "Shield" ;
TrackS LinesS := GeoG2 ::
   <<Option>> ;

*----
*  Flux calculation geometry
*----
EVALUATE Option := "Flux" ;

TrackF LinesF := GeoG2 ::
   <<Option>> ;

*----
*  Reference library parameters
*----
REAL Ctemp Mtemp Ftemp := 923.15 345.66 1273.15 ;

*----
*  Perturb fuel temperature by + 500.0
*----
EVALUATE TComb := Ftemp 500.0 + ;
MicLib := MicG2IAEA ::
   <<TComb>> <<TCalo>> <<TMode>>
   <<DCalo>> <<DMode>> <<PCalo>>
   <<PMode>> <<Bore>> <<Xe>>
   <<Sm>> <<Np>> <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
           LinesS LinesF ::
   <<NbEtapes>>
   <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditTF1.exp := EditDS ;
EVALUATE NomDB NomEdit := "FTEMP-UP" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ::
   <<NomDB>> <<NomEdit>> ;
CPMTF1.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
*-----
* Perturb fuel temperature by - 500.0
*-----
EVALUATE TComb := Ftemp 500.0 ;
MicLib := MicG2IAEA ::
    <<TComb>> <<TCalo>> <<TMode>>
    <<DCalo>> <<DMode>> <<PCalo>>
    <<PMode>> <<Bore>> <<Xe>>
    <<Sm>>  <<Np>>  <<DCaloIsol>> ;
EditDS := EvoG2Per ConcIso EditRef MicLib TrackS TrackF
            LinesS LinesF ::
                <<NbEtapes>>
                <<ChangXe>> <<ChangSm>> <<ChangNp>> ;
EditTF2.exp := EditDS ;
EVALUATE NomDB NomEdit := "FTEMP-D" "Nominal" ;
CpoDS := CpoG2 EditDS ConcIso ;
    <<NomDB>> <<NomEdit>> ;
CPMTF2.exp := CpoDS ;
CpoDS EditDS MicLib := DELETE: CpoDS EditDS MicLib ;
EditRef ConcIso := DELETE: EditRef ConcIso ;
END: ;
QUIT "LIST" .

C.2 Procedures

C.2.1 Procedure CpoG2.c2m

*DECK CpoG2.c2m
*-----
* Nom : CpoG2.c2m
* Type : DRAGON procedure
* Usage : Create CPO
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
* Description de la procedure:
* CpoDS := CpoG2 EditDS ConcIso ::
*   <<NomDB>> <<NomEdit>> ;
* Structures d’entrée :
*   ConcIso : Burnup data structure.
*   MicLib  : Microlib
* Paramètres d’entrée
*   NomDB   : Name of the CPO database.
*   NomEdit : Name of the Edit directories.
* Structures de sortie :
*   CpoDS   : CPO data structure
*
*-----
* Definition of the data structures for the procedure.
*-----
PARAMETER CpoDS EditDS ConcIso ::
   ::: XSM_FILE CpoDS EditDS ConcIso ; ;
*-----
* Read input information
*-----
STRING NomDB NomEdit ;
   :: >>NomDB<< >>NomEdit<< ;
*-----
* Define modules, data structures and variables
*-----
MODULE CPO: DELETE: END: ;
IF NomEdit "Nominal" = THEN
  CpoDS := CPO: EditDS ConcIso ::
    EDIT 0
    BURNUP <<NomEdit>>
    EXTRACT BMOD MB10
    EXTRACT CWAT CO16 CD2 CH1
    EXTRACT MWAT MO16 MD2 MH1
    EXTRACT XE135 Xe135
    EXTRACT SM149 Sm149
    EXTRACT NP239 Pa233 Np239
EXTRACT FPC U233 Pu239 Pu240 Pu241
    NAME <<NomDB>> ;
ENDIF;

IF NomEdit "Reflect" = THEN
    CpoDS := CPO: EditDS ConcIso ::
        EDIT 0
        STEP 'Reflect 1'
        EXTRACT BMOD MB10
        EXTRACT MWAT MO16 MD2 MH1
    NAME <<NomDB>> ;
ENDIF;
QUIT .

C.2.2 Procedure EvoG2Per.c2m

*DECK EvoG2Per.c2m
*-----
* Nom : EvoG2Per.c2m
* Type : Procedure DRAGON
* Usage : Perturbation calculations
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
* Description de la procedure:
*
* EditDS := EvoG2Per ConcIso EditRef MicLib TrackingS TrackingF
*            IntlineS IntlineF ::
*            <<NbEtapes>> <<Xe>> <<Sm>> <<Np>> ;
* Input structures :
* ConcIso : Burnup data structure.
* EditRef : Reference Edition data structure.
* MicLib : Microlib
* TrackingS : tracking data structures for self-shielding.
* TrackingF : tracking data structures for flux calculations.
* IntlineS : Integration lines for self-shielding.
* IntlineF : Integration lines for flux calculations.
* Input variables :
* NbEtapes : Number of burnup steps.
* ChangXe : New Xe135 concentration
* ChangSm : New Sm149 concentration
* ChangNp : New Np239 concentration
* Output structures :
*
*----
* Definition of the data structures for the procedure.
*----
PARAMETER EditDS ConcIso EditRef MicLib
   TrackingS TrackingF IntlineS IntlineF ::
::: XSM_FILE EditDS ConcIso EditRef MicLib ;
::: LINKED_LIST TrackingS TrackingF ;
::: SEQ_BINARY IntlineS IntlineF ;

*----
* Read input information
*----
INTEGER NbEtapes ;
REAL ChangXe ChangSm ChangNp ;
:: >>NbEtapes<< >>ChangXe<< >>ChangSm<< >>ChangNp<< ;
*----
* Modules, structure de donnees et variables
*----
MODULE LIB: SHI: ASM: FLU: EDI: EVO:
   UTL: BACKUP: RECOVER: DELETE: END: ;
LINKED_LIST TmpMicLib PIJ Flux EditTmp temp ;
*----
* Variables for directory names in the Edition data structure
*----
STRING RefDir ModDir ;
*----
* Import MicLib in TmpMicLib
*----
TmpMicLib := MicLib ;
temp := MicLib ;
EditTmp := EditRef ;
INTEGER NumEtape := 0 ;
WHILE NbEtapes NumEtape > DO 
   EVALUATE NumEtape := NumEtape 1 + ;
*----
* Update microlib for this burnup step using ConcIso
*----
IF NumEtape 10 < THEN 
   EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
ELSEIF NumEtape 100 < THEN 
   EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
ELSE 
   EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
ENDIF ;
IF NumEtape 10 < THEN 
   EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSEIF NumEtape 100 < THEN 
   EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSE 
   EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ENDIF ;
TmpMicLib := LIB: TmpMicLib ConcIso ::
   BURN <<NumEtape>> MIX 11 MIX 14 MIX 17 MIX 20 MIX 23 MIX 26
   MIX 10 MIX 13 MIX 16 MIX 19 MIX 22 MIX 25
   MIX 12 MIX 15 MIX 18 MIX 21 MIX 24 MIX 27 ;
*----
* Update microlib for Xe-135
*----
IF ChangXe 0.0 > THEN 
   TmpMicLib := LIB: TmpMicLib temp ::
      MAXS MIX 11 Xe135 <<ChangXe>> MIX 14 Xe135 <<ChangXe>>
      MIX 17 Xe135 <<ChangXe>> MIX 20 Xe135 <<ChangXe>>
      MIX 23 Xe135 <<ChangXe>> MIX 26 Xe135 <<ChangXe>>
      MIX 12 Xe135 <<ChangXe>> MIX 15 Xe135 <<ChangXe>>
      MIX 18 Xe135 <<ChangXe>> MIX 21 Xe135 <<ChangXe>>
MIX 24 Xe135 <<ChangXe>> MIX 27 Xe135 <<ChangXe>> ;
ENDIF ;

*----
* Update microlib for Sm-149
*----
IF ChangSm 0.0 > THEN
    TmpMicLib := LIB: TmpMicLib temp ::
        MAXS MIX 11 Sm149 <<ChangXe>> MIX 14 Sm149 <<ChangXe>>
            MIX 17 Sm149 <<ChangXe>> MIX 20 Sm149 <<ChangXe>>
            MIX 23 Sm149 <<ChangXe>> MIX 26 Sm149 <<ChangXe>>
            MIX 12 Xe135 <<ChangXe>> MIX 15 Xe135 <<ChangXe>>
            MIX 18 Xe135 <<ChangXe>> MIX 21 Xe135 <<ChangXe>>
            MIX 24 Xe135 <<ChangXe>> MIX 27 Xe135 <<ChangXe>> ;
    ENDIF ;

*----
* Update microlib for Np-239
*----
IF ChangNp 0.0 > THEN
    TmpMicLib := LIB: TmpMicLib temp ::
        MAXS MIX 10 Np239 <<ChangXe>> MIX 13 Np239 <<ChangXe>>
            MIX 16 Np239 <<ChangXe>> MIX 19 Np239 <<ChangXe>>
            MIX 22 Np239 <<ChangXe>> MIX 25 Np239 <<ChangXe>>
            MIX 12 Xe135 <<ChangXe>> MIX 15 Xe135 <<ChangXe>>
            MIX 18 Xe135 <<ChangXe>> MIX 21 Xe135 <<ChangXe>>
            MIX 24 Xe135 <<ChangXe>> MIX 27 Xe135 <<ChangXe>> ;
    ENDIF ;

*----
* Flux calculation and editing
* Recover DB2 from reference flux calculation
*----
TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0 ;
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;
EditTmp := UTL: EditTmp ::
    STEP UP <<RefDir>> STEP UP FluxMultigrp ;
Flux := RECOVER: EditTmp ;
EditTmp := UTL: EditTmp ::
STEP DOWN STEP DOWN ;
Flux := FLUX: Flux PIJ TmpMicLib TrackingF ::
    TYPE B B1 PNL IDEM DB2 ;
PIJ := DELETE: PIJ ;
IF NumEtape 1 THEN
    EditDS := EDI: Flux TmpMicLib TrackingF ::
        COND 0.625 MERG COMP
        MICR ALL SAVE ON <<RefDir>> ;
    EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
        COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
        MICR ALL SAVE ON <<ModDir>> ;
ELSE
    EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
        COND 0.625 MERG COMP
        MICR ALL SAVE ON <<RefDir>> ;
    EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
        COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
        MICR ALL SAVE ON <<ModDir>> ;
ENDIF ;
EditDS := UTL: EditDS ::
    STEP UP <<RefDir>> STEP UP FluxMultigrp ;
EditDS := BACKUP: EditDS Flux ;
EditDS := UTL: EditDS ::
    STEP DOWN STEP DOWN ;
Flux := DELETE: Flux ;
ENDWHILE ;
*----
* Clean-up
*----
EditTmp TmpMicLib := DELETE: EditTmp TmpMicLib ;
QUIT "LIST" .

C.2.3 Procedure EvoG2Pui.c2m

*DECK EvoG2Pui.c2m
*----
* Nom : EvoG2Pui.c2m
* Type : DRAGON procedure
* Usage : Solve transport equation and burn the fuel.
  Perturbed powers.
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
* Description de la procedure:

* EditDS ConcIso := EvoG2Pui MicLib TrackingS TrackingF
  IntlineS IntlineF ::
  <<RefPower>> <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
* Input structures :
  * MicLib : Microlib
  * TrackingS : tracking data structures for self-shielding.
  * TrackingF : tracking data structures for flux calculations.
  * IntlineS : Integration lines for self-shielding.
  * IntlineF : Integration lines for flux calculations.
* Input variables :
  * RefPower : Reference burnup power.
  * Puissance : Burnup power.
  * MaxBurn : Maximum burnup.
  * NbEtapes : Number of burnup steps.
* Output structures :
  * ConcIso : Burnup data structure.

*----
* Definition of the data structures for the procedure.
*----
PARAMETER EditDS ConcIso MicLib
  TrackingS TrackingF IntlineS IntlineF ::
  ::: XSM_FILE EditDS ConcIso MicLib ;
  ::: LINKED_LIST TrackingS TrackingF ;
  ::: SEQ_BINARY IntlineS IntlineF ; ;
*----
* Read input information
*----
REAL RefPower Puissance MaxBurn;
INTEGER NbEtapes;
:: >>RefPower<< >>Puissance<< >>MaxBurn<< >>NbEtapes<<;
ECHO "EvoG2Pui: Specific power per fuel bundle = " Puissance "kW/kg";
ECHO "EvoG2Pui: Maximum burnup = " MaxBurn "kW*J/kg";
ECHO "EvoG2Pui: Number of burnup steps = " NbEtapes;
*-----
* Define modules, data structures and variables
*-----
MODULE SHI: ASM: FLU: EDI: EVO: CPO:
    UTL: BACKUP: DELETE: END:
LINKED_LIST TmpMicLib PIJ Flux;
INTEGER FinEvo := 0;
*-----
* Variables for Burnup (burnup times):
* 1) t(1)=0 day
* 2) t(2)=1 day
* 3) t(i)=FacTLog**(i-2) days
* with FacTLog=exp(ln(MaxBurn/Puissance)/(NbEtapes-2))
* 4) t(NbEtapes)=MaxBurn/Puissance days
*-----
REAL Timei Timef := 0.0 RefPower Puissance /;
REAL FacTLog :=
    MaxBurn RefPower / LN NbEtapes 2 - I_TO_R / EXP;
*-----
* Variables for directory names in the Edition data structure
*-----
STRING RefDir ModDir;
*-----
* First flux calculation
*-----
TmpMicLib := MicLib;
INTEGER NumEtape := 1;
EVALUATE RefDir := "Nominal " NumEtape I_TO_S +;
EVALUATE ModDir := "Reflect " NumEtape I_TO_S +;
TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0;
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;
Flux := FLU: PIJ TmpMicLib TrackingF :: TYPE B B1 PNL ;
PIJ := DELETE: PIJ ;
EditDS := EDI: Flux TmpMicLib TrackingF ::
   COND 0.625 MERG COMP
   MICR ALL SAVE ON <<RefDir>> ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
   COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
   MICR ALL SAVE ON <<ModDir>> ;
*----------
* Save also fluxes in EditDS
*----------
EditDS := UTL: EditDS ::
   STEP UP <<RefDir>> STEP UP FluxMultigrp ;
EditDS := BACKUP: EditDS Flux ;
EditDS := UTL: EditDS ::
   STEP DOWN STEP DOWN ;
*----------
* Burnup loop
*----------
WHILE NbEtapes NumEtape > DO
   IF NumEtape 1 = THEN
      ConcIso TmpMicLib := EVO: TmpMicLib Flux TrackingF ::
         DEPL <<Timei>> <<Timef>> DAY POWR <<Puissance>> ;
   ELSE
      ConcIso TmpMicLib := EVO: ConcIso TmpMicLib Flux TrackingF ::
         DEPL <<Timei>> <<Timef>> DAY POWR <<Puissance>> ;
   ENDIF ;
   EVALUATE NumEtape := NumEtape 1 + ;
   IF NumEtape 10 < THEN
      EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
   ELSEIF NumEtape 100 < THEN
      EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
   ELSE
      EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
   ENDIF ;
IF NumEtape 10 < THEN
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSEIF NumEtape 100 < THEN
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSE
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ENDIF;

TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0 ;
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;
Flux := FLU: Flux PIJ TmpMicLib TrackingF :: TYPE B B1 PNL ;
PIJ := DELETE: PIJ ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
  COND 0.625 MERG COMP
  MICR ALL SAVE ON <<RefDir>> ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
  COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
  MICR ALL SAVE ON <<ModDir>> ;
EditDS := UTL: EditDS ::
  STEP UP <<RefDir>> STEP UP FluxMultigrp ;
EditDS := BACKUP: EditDS Flux ;
EditDS := UTL: EditDS ::
  STEP DOWN STEP DOWN ;
*-----
* Next time step
* Timei=Timef
* Timef=Timesi*FacTLog
*-----
  EVALUATE Timei := Timef ;
  EVALUATE Timef := Timei FacTLog * ;
ENDWHILE ;
*-----
* Clean up
*-----
Flux TmpMicLib := DELETE: Flux TmpMicLib ;
QUIT .
C.2.4 Procedure EvoG2Ref.c2m

*DECK EvoG2Ref.c2m

*----
* Nom : EvoG2Ref.c2m
* Type : DRAGON procedure
* Usage : Solve transport equation and burn the fuel.
* Generate Edition and Burnup data structure.
* Auteur : G. Marleau
* P. Adouki (Summer 2011)
* Description de la procedure:
* EditDS ConcIso := EvoG2Ref MicLib TrackingS TrackingF
* IntlineS IntlineF ::
* <<Puissance>> <<MaxBurn>> <<NbEtapes>> ;
* Input structures :
* MicLib : Microlib
* TrackingS : tracking data structures for self-shielding.
* TrackingF : tracking data structures for flux calculations.
* IntlineS : Integration lines for self-shielding.
* IntlineF : Integration lines for flux calculations.
* Input variables :
* Puissance : Burnup power.
* MaxBurn : Maximum burnup.
* NbEtapes : Number of burnup steps.
* Output structures :
* ConcIso : Burnup data structure.
*
*----
* Definition of the data structures for the procedure.
*----
PARAMETER EditDS ConcIso MicLib
TrackingS TrackingF IntlineS IntlineF ::
::: XSM_FILE EditDS ConcIso MicLib ;
::: LINKED_LIST TrackingS TrackingF ;
::: SEQ_BINARY IntlineS IntlineF ; ;
*----
* Read input information
*----
REAL Puissance MaxBurn;
INTEGER NbEtapes;
:: >>Puissance<< >>MaxBurn<< >>NbEtapes<<;
ECHO "EvoG2Ref: Specific power per fuel bundle = " Puissance "kW/kg" ;
ECHO "EvoG2Ref: Maximum burnup = " MaxBurn "kW*J/kg" ;
ECHO "EvoG2Ref: Number of burnup steps = " NbEtapes ;
*----
* Define modules, data structures and variables
*----
MODULE SHI: ASM: FLU: EDI: EVO: CPO:
    UTL: BACKUP: DELETE: END;
LINKED_LIST TmpMicLib PIJ Flux;
*----
* Variables for Burnup (burnup times):
* 1) t(1)=0 day
* 2) t(2)=1 day
* 3) t(i)=FacTLog**(i-2) days
* with FacTLog=exp(ln(MaxBurn/Puissance)/(NbEtapes-2))
* 4) t(NbEtapes)=MaxBurn/Puissance days
*----
INTEGER FinEvo := 0;
REAL Timei Timef := 0.0 1.0;
REAL FacTLog :=
    MaxBurn Puissance / LN NbEtapes 2 - I_TO_R / EXP;
*----
* Variables for directory names in the Edition data structure
*----
STRING RefDir ModDir;
*----
* First flux calculation
*----
TmpMicLib := MicLib;
INTEGER NumEtape := 1;
EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0 ;
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;
Flux := FLU: PIJ TmpMicLib TrackingF :: TYPE B B1 PNL ;
PIJ := DELETE: PIJ ;
EditDS := EDI: Flux TmpMicLib TrackingF ::
    COND 0.625 MERG COMP
    MICR ALL SAVE ON <<RefDir>> ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
    COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
    MICR ALL SAVE ON <<ModDir>> ;
*----------
* Save also fluxes in EditDS
*----------
EditDS := UTL: EditDS ::
    STEP UP <<RefDir>> STEP UP FluxMultigrp ;
EditDS := BACKUP: EditDS Flux ;
EditDS := UTL: EditDS ::
    STEP DOWN STEP DOWN ;
*----------
* Burnup loop
*----------
WHILE NbEtapes NumEtape > DO
    IF NumEtape 1 = THEN
        ConcIso TmpMicLib := EVO: TmpMicLib Flux TrackingF ::
            DEPL <<Timei>> <<Timef>> DAY POWR <<Puissance>> ;
    ELSE
        ConcIso TmpMicLib := EVO: ConcIso TmpMicLib Flux TrackingF ::
            DEPL <<Timei>> <<Timef>> DAY POWR <<Puissance>> ;
    ENDIF ;
    EVALUATE NumEtape := NumEtape 1 + ;
    IF NumEtape 10 < THEN
        EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
    ELSEIF NumEtape 100 < THEN
        EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
    ENDIF ;
ELSE
  EVALUATE RefDir := "Nominal " NumEtape I_TO_S + ;
ENDIF ;
IF NumEtape 10 < THEN
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSEIF NumEtape 100 < THEN
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ELSE
  EVALUATE ModDir := "Reflect " NumEtape I_TO_S + ;
ENDIF ;
TmpMicLib := SHI: TmpMicLib TrackingS IntlineS :: EDIT 0 ;
PIJ := ASM: TmpMicLib TrackingF IntlineF :: EDIT 0 ;
Flux := FLU: Flux PIJ TmpMicLib TrackingF :: TYPE B B1 PNL ;
PIJ := DELETE: PIJ ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
  COND 0.625 MERG COMP
  MICR ALL SAVE ON <<RefDir>> ;
EditDS := EDI: EditDS Flux TmpMicLib TrackingF ::
  COND 0.625 MERG MIX 0 0 0 0 0 0 0 1
  MICR ALL SAVE ON <<ModDir>> ;
EditDS := UTL: EditDS ::
  STEP UP <<RefDir>> STEP UP FluxMultigrp ;
EditDS := BACKUP: EditDS Flux ;
EditDS := UTL: EditDS ::
  STEP DOWN STEP DOWN ;
*----
* Next time step
* Timei=Timef
* Timef=Timesi*FacTLog
*----
  EVALUATE Timei := Timef ;
  EVALUATE Timef := Timei FacTLog * ;
ENDWHILE ;
*----
* Clean up
*----
Flux TmpMicLib := DELETE: Flux TmpMicLib ;
QUIT "LIST" .

C.2.5 Procedure GEOG2.c2m

**********GEOG2.c2m**********
**********Modified version of SCWRGeo2D.c2m of G. Harrisson**********
**********Modifications by P. Adouki (Summer 2011)**********

PARAMETER Tracking Intline ::
    ::: LINKED_LIST Tracking ;
    ::: SEQ_BINARY Intline ;
STRING Option ;
:: >>Option<<

*****
* Local modules used in this procedure
*****

MODULE GEO: NXT: DELETE: ;
*****

*****
* Local data structures used in this procedure
*****

LINKED_LIST LocalGeo ;
*****

*****
* Select geometry
*****

LocalGeo := GEO: :: CARCEL 8 3 3
EDIT 0
  X- REFL MESHX -12.5 -8.4853 8.4853 12.5 X+ REFL
  Y- REFL MESHY -12.5 -8.4853 8.4853 12.5 Y+ REFL
  RADIUS 0.00000 2.10480 3.60300 5.06525 6.80000 6.90000
  8.23000 9.63000 12.00000
  MIX 1 1 1 3 6 7 8 8
       1 1 1 3 6 7 8 8
CLUSTER ROD1 ROD2 ROD3 ROD4

::: ROD1 := GEO: TUBE 2
   RADIUS 0.000 1.800 2.000
   MIX  28 29
   NPIN 1 RPIN 0.0000 APIN 0.0000 ;

::: ROD2 := GEO: TUBE 2 1 2
   RADIUS 0.000 0.620 0.660
   MESHX -0.660 0.660
   MESHY -0.660 0.000 0.660
   MIX 12 9 15 9
   NPIN 12 RPIN 2.8755 APIN 0.2618 ;

::: ROD3 := GEO: TUBE 2 1 2
   RADIUS 0.000 0.620 0.660
   MESHX -0.660 0.660
   MESHY -0.660 0.000 0.660
   MIX 18 9 21 9
   NPIN 18 RPIN 4.3305 APIN 0.1745 ;

::: ROD4 := GEO: TUBE 2 1 2
   RADIUS 0.000 0.620 0.660
   MESHX -0.660 0.660
   MESHY -0.660 0.000 0.660
   MIX 24 9 27 9
   NPIN 24 RPIN 5.8000 APIN 0.1309 ;

IF Option "Flux" = THEN
  LocalGeo := GEO: LocalGeo :: SPLITR 1 21 21 21 1 14 3 7
  SPLITX 4 1 4
  SPLITY 4 1 4

::: ROD1 := GEO: ROD1 SPLITR 1 1 ;
::: ROD2 := GEO: ROD2 SPLITR 4 1 ;
::: ROD3 := GEO: ROD3 SPLITR 4 1 ;
::: ROD4 := GEO: ROD4 SPLITR 4 1 ;
ENDIF ;

*----
* Process the geometry
*----
IF Option "Flux" = THEN
  Inline Tracking := NXT: LocalGeo :: EDIT 10 TISO 20 20.0 ;
ELSE
  Inline Tracking := NXT: LocalGeo :: EDIT 10 TISO 20 35.0 ;
ENDIF ;
*----
* Clean up
*----
LocalGeo := DELETE: LocalGeo ;
QUIT "LIST" .

C.2.6  Procedure MicG2IAEA.c2m

****************** MicG2IAEA.c2m ******************************************************
*******Modified version of SCWRLib.c2m of G. Harrisson*************
**************Modifications by P. Adouki (Summer 2011)**************
*
*Description de la procedure:
*BiblioInt := SCWRLib :: <<TCalo>> <<DCalo>> <<DCaloIsol>> ;
*TCalo    : Temperature du caloporteur en K
*DCalo    : Densite du caloporteur en g/cm3
*DCaloIsol: Densite du caloporteur a la temperature de l'isolant en g/cm3
*BiblioInt : Bibliotheque interne requise pour les calculs
*
*------------------------------------------------------------------------
*Definir les structures de donnees des parametres et les modules utilise
*------------------------------------------------------------------------
PARAMETER  BiblioInt :: :: XSM_FILE BiblioInt ;
MODULE    INFO: LIB: DELETE: END:  ;
*Lire les variables transmises à la procedure

REAL DCaloIsol TComb TCalo TMode
    DCalo DMode PCalo PMode
    Bore Xe Sm Np

:: >>TComb<< >>TCalo<< >>TMode<<
   >>DCalo<< >>DMode<<
   >>PCalo<< >>PMode<<
   >>Bore<< >>Xe<< >>Sm<< >>Np<<
   >>DCaloIsol<<

REAL BNatMode := 1.0E-10;

*Definir les variables locales

REAL TLiner TTubFrc TGaine TIsol
    WgtH1Calo WgtD2Calo WgtO16Calo
    WgtH1Mod WgtD2Mod WgtO16Mod;

*Definir la temperature des melanges a partir de TCalo

EVALUATE TLiner := TCalo;
EVALUATE TTubFrc := 0.3324 TCalo * 267.36 +;
EVALUATE TGaine := 0.4989 TCalo * 480.87 +;
EVALUATE TIsol := 0.666 TCalo * 133.73 +;

*Composition isotopique (en % massique) de l'eau du calcoporteur et du moderateur

INFO: ::
    PUR: <<PCalo>> ATM%
    LIB: WIMSD4 FIL: endfb7
    ISO: 3 '3001' '3002' '6016'
    CALC WGT% D2O >>WgtH1Calo<< >>WgtD2Calo<< >>WgtO16Calo<< ;
INFO: ::

PUR: <<PMode>> ATM%
LIB: WIMSD4 FIL: endfb7
ISO: 3 '3001' '3002' '6016'
CALC WGT% D2O >>WgtH1Mod<< >>WgtD2Mod<< >>WgtO16Mod<< ;

*-------------------------
*Donnees IAEA - ENDF/B-VII
*-------------------------

BiblioInt := LIB: ::

EDIT 0
NMIX 29 CTRA WIMS
DEPL LIB: WIMSD4 FIL: endfb7
MIXS LIB: WIMSD4 FIL: endfb7

*------------------------------
*Definir les melanges de la cellule
*------------------------------

*CALOPOREUR (Eau legere : 99.984 %ATM H2O & 0.0156 %ATM D2O)

MIX 1 <<TCalo>> <<DCalo>>
CH1 = '3001' <<WgtH1Calo>>
CD2 = '3002' <<WgtD2Calo>>
CO16 = '6016' <<WgtO16Calo>>

*LINER (30 % Acier inoxydable 310 et 70 % Caloporteur)

MIX 2 <<TLiner>> 7.75
C = '2012' 0.250
Si = '29' 1.499999
P31 = '31' 0.045
S = '32' 0.029999
Mn55 = '55' 2.000
Cr = '52' 25.0000015
Fe = '2056' 50.675132581
Ni = '58' 19.956433

MIX 3 COMB 2 0.30 1 0.70
*ISOLANT (30 % ZrO2 et 70 % Caloporteur)

MIX 4 <<TIsol>> 5.68
Zr = '91' 100.0026
O16 = '6016' 35.0684

MIX 5 <<TIsol>> <<DCaloIsol>>
CH1 = '3001' <<WgtH1Calo>>
CD2 = '3002' <<WgtD2Calo>>
CO16 = '6016' <<WgtO16Calo>>

MIX 6 COMB 4 0.30 5 0.70

*TUBE DE FORCE (Alliage de Zr : Zr-2.5Nb)

MIX 7 <<TTubFrc>> 6.515
Nb93 = '93' 2.58
Fe = '2056' 0.046780177764
Cr = '52' 0.008087975736
Ni = '58' 0.0035
B10 = '1010' 0.00002431
Zr = '91' 97.3132811882

*MODERATEUR (Eau lourde : 99.833 %ATM D2O & 0.167 %ATM H2O)

MIX 8 <<TMode>> <<DMode>>
MH1 = '3001' <<WgtH1Mod>>
MD2 = '3002' <<WgtD2Mod>>
MO16 = '6016' <<WgtO16Mod>>
MB10 = '1011' <<BNatMode>>

*GAINE (Acier inoxydable 310)

MIX 9 <<TGaine>> 7.75
C = '2012' 0.250
Si = '29' 1.499999
P31 = '31' 0.045
S = '32' 0.029999
Mn55 = '55' 2.000
Cr = '52' 25.000015
Fe = '2056' 50.675132581
Ni = '58' 19.956433

*COMBUSTIBLE 1 (90% Thorium et 10% Plutonium recycle)

*MIX 10 <<TComb>> 9.70
  016 = '6016' 13.389
  Np239 = '1939' <<Np>>
  Pu238 = '948' 2.5 1
  Pu239 = '6239' 54.2 1
  Pu240 = '1240' 23.8 1
  Pu241 = '1241' 12.6 1
  Pu242 = '242' 6.8 1

*MIX 11 <<TComb>> 9.70
  Th232 = '2232' 100.0 1
  Pa233 = '1233' 0.0 1
  U233 = '9233' 0.0 1
  016 = '6016' 13.79
  Sm149 = '4149' <<Sm>>
  Xe135 = '4135' <<Xe>>

*MIX 12 COMB 10 0.12 11 0.88

*COMBUSTIBLE 2 (90% Thorium et 10% Plutonium recycle)

*MIX 13 <<TComb>> 9.70
  016 = '6016' 13.389
  Np239 = '1939' <<Np>>
  Pu238 = '948' 2.5 2
<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Abundance</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu239</td>
<td>239</td>
<td>54.2</td>
<td>2</td>
</tr>
<tr>
<td>Pu240</td>
<td>240</td>
<td>23.8</td>
<td>2</td>
</tr>
<tr>
<td>Pu241</td>
<td>241</td>
<td>12.6</td>
<td>2</td>
</tr>
<tr>
<td>Pu242</td>
<td>242</td>
<td>6.8</td>
<td>2</td>
</tr>
</tbody>
</table>

**MIX 14** <<TComb>> 9.70
- Th232 = '2232' 100.0 2
- Pa233 = '1233' 0.0 2
- U233 = '9233' 0.0 2
- O16 = '6016'  13.79
- Sm149 = '4149' <<Sm>>
- Xe135 = '4135' <<Xe>>

**MIX 15 COMB 13 0.12 14 0.88**

*COMBUSTIBLE 3 (90% Thorium et 10% Plutonium recycle)*

**MIX 16** <<TComb>> 9.70
- O16 = '6016' 13.389
- Np239 = '1939' <<Np>>
- Pu238 = '948'  2.5 3
- Pu239 = '6239' 54.2 3
- Pu240 = '1240' 23.8 3
- Pu241 = '1241' 12.6 3
- Pu242 = '242'  6.8 3

**MIX 17** <<TComb>> 9.70
- Th232 = '2232' 100.0 3
- Pa233 = '1233' 0.0 3
- U233 = '9233' 0.0 3
- O16 = '6016' 13.79
- Sm149 = '4149' <<Sm>>
- Xe135 = '4135' <<Xe>>

**MIX 18 COMB 16 0.12 17 0.88**
**COMBUSTIBLE 4 (90% Thorium et 10% Plutonium recycle)**

<table>
<thead>
<tr>
<th>MIX  19 &lt;&lt;TComb&gt;&gt;</th>
<th>9.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>O16 = '6016'</td>
<td>13.389</td>
</tr>
<tr>
<td>Np239 = '1939'</td>
<td>&lt;&lt;Np&gt;&gt;</td>
</tr>
<tr>
<td>Pu238 = '948'</td>
<td>2.5</td>
</tr>
<tr>
<td>Pu239 = '6239'</td>
<td>54.2</td>
</tr>
<tr>
<td>Pu240 = '1240'</td>
<td>23.8</td>
</tr>
<tr>
<td>Pu241 = '1241'</td>
<td>12.6</td>
</tr>
<tr>
<td>Pu242 = '242'</td>
<td>6.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIX  20 &lt;&lt;TComb&gt;&gt;</th>
<th>9.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th232 = '2232'</td>
<td>100.0</td>
</tr>
<tr>
<td>Pa233 = '1233'</td>
<td>0.0</td>
</tr>
<tr>
<td>U233 = '9233'</td>
<td>0.0</td>
</tr>
<tr>
<td>O16 = '6016'</td>
<td>13.79</td>
</tr>
<tr>
<td>Sm149 = '4149'</td>
<td>&lt;&lt;Sm&gt;&gt;</td>
</tr>
<tr>
<td>Xe135 = '4135'</td>
<td>&lt;&lt;Xe&gt;&gt;</td>
</tr>
</tbody>
</table>

MIX 21 COMB 19 0.12 20 0.88

**COMBUSTIBLE 5 (90% Thorium et 10% Plutonium recycle)**

<table>
<thead>
<tr>
<th>MIX  22 &lt;&lt;TComb&gt;&gt;</th>
<th>9.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>O16 = '6016'</td>
<td>13.389</td>
</tr>
<tr>
<td>Np239 = '1939'</td>
<td>&lt;&lt;Np&gt;&gt;</td>
</tr>
<tr>
<td>Pu238 = '948'</td>
<td>2.5</td>
</tr>
<tr>
<td>Pu239 = '6239'</td>
<td>54.2</td>
</tr>
<tr>
<td>Pu240 = '1240'</td>
<td>23.8</td>
</tr>
<tr>
<td>Pu241 = '1241'</td>
<td>12.6</td>
</tr>
<tr>
<td>Pu242 = '242'</td>
<td>6.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIX  23 &lt;&lt;TComb&gt;&gt;</th>
<th>9.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th232 = '2232'</td>
<td>100.0</td>
</tr>
<tr>
<td>Pa233 = '1233'</td>
<td>0.0</td>
</tr>
<tr>
<td>U233 = '9233'</td>
<td>0.0</td>
</tr>
</tbody>
</table>
016  = '6016'    13.79  
Sm149 = '4149'   <<Sm>>
Xe135 = '4135'   <<Xe>>

MIX 24 COMB 22 0.12 23 0.88

*COMBUSTIBLE 6 (90% Thorium et 10% Plutonium recycle)

*----------------------------------------------------
MIX 25 <<TComb>> 9.70
  016  = '6016'    13.389
  Np239 = '1939'   <<Np>>
  Pu238 = '948'    2.5   6
  Pu239 = '6239'   54.2  6
  Pu240 = '1240'   23.8  6
  Pu241 = '1241'   12.6  6
  Pu242 = '242'    6.8   6

MIX 26 <<TComb>> 9.70
  Th232 = '2232'   100.0  6
  Pa233 = '1233'   0.0    6
  U233  = '9233'   0.0    6
  016  = '6016'    13.79
  Sm149 = '4149'   <<Sm>>
  Xe135 = '4135'   <<Xe>>

MIX 27 COMB 25 0.12 26 0.88

*PIN CENTRALE (Eau legere : 99.984 %ATM H2O & 0.0156 %ATM D2O)

*-------------------------------------------------------------
MIX 28 <<TCalo>> <<DCalo>>
  H1   = '3001'   <<WgtH1Calo>>
  D2   = '3002'   <<WgtD2Calo>>
  016  = '6016'   <<Wgt016Calo>>

*GAIN PIN CENTRALE (Acier inoxydable 310)

*-------------------------------------------------------------
MIX 29 <<TGaine>> 7.75
C = '2012' 0.250
Si = '29' 1.499999
P31 = '31' 0.045
S  = '32' 0.029999
Mn55 = '55' 2.000
Cr  = '52' 25.000015
Fe  = '2056' 50.675132581
Ni  = '58' 19.956433 ;

END: ;
QUIT "LIST".