Kalum Ost, W. Bradley Jacobs, Nathan Evaniew, Julien Cohen-Adad, David Anderson et David W. Cadotte
Article de revue (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Despite Degenerative Cervical Myelopathy (DCM) being the most common form of spinal cord injury, effective methods to evaluate patients for its presence and severity are only starting to appear. Evaluation of patient images, while fast, is often unreliable; the pathology of DCM is complex, and clinicians often have difficulty predicting patient prognosis. Automated tools, such as the Spinal Cord Toolbox (SCT), show promise, but remain in the early stages of development. To evaluate the current state of an SCT automated process, we applied it to MR imaging records from 328 DCM patients, using the modified Japanese Orthopedic Associate scale as a measure of DCM severity. We found that the metrics extracted from these automated methods are insufficient to reliably predict disease severity. Such automated processes showed potential, however, by highlighting trends and barriers which future analyses could, with time, overcome. This, paired with findings from other studies with similar processes, suggests that additional non-imaging metrics could be added to achieve diagnostically relevant predictions. Although modeling techniques such as these are still in their infancy, future models of DCM severity could greatly improve automated clinical diagnosis, communications with patients, and patient outcomes.
Mots clés
degenerative cervical myelopathy; personalized medicine; machine learning; spinal cord
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale |
---|---|
Département: |
Département de génie électrique Institut de génie biomédical |
Centre de recherche: | NeuroPoly - Laboratoire de Recherche en Neuroimagerie |
Organismes subventionnaires: | Alberta Spine Foundation, Hotchkiss Brain Institute - Cumming School of Medicine - Department of Clinical Neurosciences |
URL de PolyPublie: | https://publications.polymtl.ca/9395/ |
Titre de la revue: | Journal of Clinical Medicine (vol. 10, no 4) |
Maison d'édition: | MDPI |
DOI: | 10.3390/jcm10040892 |
URL officielle: | https://doi.org/10.3390/jcm10040892 |
Date du dépôt: | 07 sept. 2023 10:08 |
Dernière modification: | 28 sept. 2024 10:44 |
Citer en APA 7: | Ost, K., Jacobs, W. B., Evaniew, N., Cohen-Adad, J., Anderson, D., & Cadotte, D. W. (2021). Spinal cord morphology in degenerative cervical myelopathy patients ; assessing key morphological characteristics using Mmchine vision tools. Journal of Clinical Medicine, 10(4), 18 pages. https://doi.org/10.3390/jcm10040892 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions