<  Back to the Polytechnique Montréal portal

Supporting scale-up of COVID-19 RT-PCR testing processes with discrete event simulation

Jad El Hage, Patti Gravitt, Jacques Ravel, Nadia Lahrichi and Erica Gralla

Article (2021)

Open Acess document in PolyPublie and at official publisher
[img]
Preview
Open Access to the full text of this document
Published Version
Terms of Use: Creative Commons Attribution
Download (2MB)
[img]
Preview
Open Access to the full text of this document
Terms of Use: Creative Commons Attribution
Download (30kB)
Show abstract
Hide abstract

Abstract

Testing is critical to mitigating the COVID-19 pandemic, but testing capacity has fallen short of the need in the United States and elsewhere, and long wait times have impeded rapid isolation of cases. Operational challenges such as supply problems and personnel shortages have led to these bottlenecks and inhibited the scale-up of testing to needed levels. This paper uses operational simulations to facilitate rapid scale-up of testing capacity during this public health emergency. Specifically, discrete event simulation models were developed to represent the RT-PCR testing process in a large University of Maryland testing center, which retrofitted high-throughput molecular testing capacity to meet pandemic demands in a partnership with the State of Maryland. The simulation models support analyses that identify process steps which create bottlenecks, and evaluate “what-if” scenarios for process changes that could expand testing capacity. This enables virtual experimentation to understand the trade-offs associated with different interventions that increase testing capacity, allowing the identification of solutions that have high leverage at a feasible and acceptable cost. For example, using a virucidal collection medium which enables safe discarding of swabs at the point of collection removed a time-consuming “deswabbing” step (a primary bottleneck in this laboratory) and nearly doubled the testing capacity. The models are also used to estimate the impact of demand variability on laboratory performance and the minimum equipment and personnel required to meet various target capacities, assisting in scale-up for any laboratories following the same process steps. In sum, the results demonstrate that by using simulation modeling of the operations of SARS-CoV-2 RT-PCR testing, preparedness planners are able to identify high-leverage process changes to increase testing capacity.

Additional Information: S1 File. Modeling assumptions. Details the assumptions used in the model. https://doi.org/10.1371/journal.pone.0255214.s001 (PDF);
Data Availability Statement: All data files are available from https://github.com/ravel-lab/COVID_TESTING_DES
Subjects: 1900 Biomedical engineering > 1900 Biomedical engineering
1900 Biomedical engineering > 1901 Biomedical technology
2700 Information technology > 2716 Virtual reality and related simulations
Department: Department of Mathematics and Industrial Engineering
Research Center: CIRRELT - Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
Funders: Gordon and Betty Moore Foundation
Grant number: GBMF9634
PolyPublie URL: https://publications.polymtl.ca/9361/
Journal Title: PLOS One (vol. 16, no. 7)
Publisher: PLOS
DOI: 10.1371/journal.pone.0255214
Official URL: https://doi.org/10.1371/journal.pone.0255214
Date Deposited: 16 Aug 2023 12:09
Last Modified: 14 Mar 2025 21:47
Cite in APA 7: El Hage, J., Gravitt, P., Ravel, J., Lahrichi, N., & Gralla, E. (2021). Supporting scale-up of COVID-19 RT-PCR testing processes with discrete event simulation. PLOS One, 16(7), 19 pages. https://doi.org/10.1371/journal.pone.0255214

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only

View Item View Item