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Abstract

Testing is critical to mitigating the COVID-19 pandemic, but testing capacity has fallen short

of the need in the United States and elsewhere, and long wait times have impeded rapid iso-

lation of cases. Operational challenges such as supply problems and personnel shortages

have led to these bottlenecks and inhibited the scale-up of testing to needed levels. This

paper uses operational simulations to facilitate rapid scale-up of testing capacity during this

public health emergency. Specifically, discrete event simulation models were developed to

represent the RT-PCR testing process in a large University of Maryland testing center,

which retrofitted high-throughput molecular testing capacity to meet pandemic demands in a

partnership with the State of Maryland. The simulation models support analyses that identify

process steps which create bottlenecks, and evaluate “what-if” scenarios for process

changes that could expand testing capacity. This enables virtual experimentation to under-

stand the trade-offs associated with different interventions that increase testing capacity,

allowing the identification of solutions that have high leverage at a feasible and acceptable

cost. For example, using a virucidal collection medium which enables safe discarding of

swabs at the point of collection removed a time-consuming “deswabbing” step (a primary

bottleneck in this laboratory) and nearly doubled the testing capacity. The models are also

used to estimate the impact of demand variability on laboratory performance and the mini-

mum equipment and personnel required to meet various target capacities, assisting in

scale-up for any laboratories following the same process steps. In sum, the results demon-

strate that by using simulation modeling of the operations of SARS-CoV-2 RT-PCR testing,

preparedness planners are able to identify high-leverage process changes to increase test-

ing capacity.
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Introduction

The COVID-19 pandemic is rapidly evolving, having already claimed more than half a million

deaths in the United States alone and more than 2.5 million worldwide [1]. Testing is an effec-

tive tool in containment of the pandemic, allowing cases to be identified and isolated before

they can spread the disease further. Even as vaccination is rolled out, testing will remain essen-

tial: vaccines are not yet approved for children yet schools must reopen, many parts of the

world remain unvaccinated, and worrisome variants threaten future surges [2].

Unfortunately, testing capacity has fallen far short of the need for containing the pandemic

in the United States. An estimated 300 million COVID tests per month are needed for reopen-

ing K12 schools alone [3], yet only about 39 million are being conducted per month, down

from a peak of 60 million in mid-January 2021 [2]. Moreover, there have been long wait times

for test results, sometimes more than a week, which undermines the value of testing - - the abil-

ity to rapidly identify and isolate active cases [4].

The shortage of testing in the United States was due at least partially to operational chal-

lenges with the laboratory aspects of PCR testing (the gold standard for sensitive detection of

symptomatic and asymptomatic cases), including supply problems with essential components

like reagents and instruments, shortages of qualified personnel, and the sheer complexity of

organizing the process [3, 5–7]. To meet these challenges, multiple strategies have been

explored, including the prioritization of scarce tests for particular populations [8–10], alterna-

tive approaches for nucleic acid testing [5], and pooling multiple samples together for testing

[e.g., 11, 12]. However, other than pooling, innovations in the operational processes of COVID

testing have received very little attention. Two studies highlight opportunities for improving

processes through drive-through sample collection [13, 14]. They and others [15] argue that

process optimization could enable increased efficiency and, thus, scale-up of testing. Despite

these clear opportunities, however, we are not aware of any investigations of the laboratory

processes for PCR testing.

This paper examines the laboratory operational processes associated with PCR testing,

through the development and validation of a discrete event simulation model to represent

SARS-CoV-2 RT-PCR testing processes at the University of Maryland Pathology Associates/

Maryland Genomics (UMPA/MG), a major academic testing center for the state of Maryland

which retrofitted high-throughput molecular testing capacity to meet pandemic demands in a

partnership with the State of Maryland. The model represents the cumulative impact of multi-

ple interacting process steps. “What if” scenarios were devised to represent various potential

process and resource configurations, then evaluated to predict their relative performance on

several key performance indicators, including the result turnaround time and the total number

of samples that can be processed per week. With this approach, we investigate (1) how to elimi-

nate successive bottlenecks in the UMPA/MG laboratory to increase its capacity; (2) how vari-

ability in demand affects laboratory performance; and (3) equipment, personnel, and process

configurations to meet several target levels of laboratory capacity. The results enabled deci-

sion-makers to test system changes in silico before making major investments or reorganiza-

tion. This work demonstrates the value of simulation to support process optimization for

scaling up testing capacity to meet the needs of the current COVID-19 pandemic and to plan

ahead for future public health emergencies.

Background

SARS-CoV-2 PCR testing is now performed by a wide variety of commercial, academic, and

public organizations in the United States, many of whom significantly ramped up their opera-

tions to respond to the public health needs. This paper studies one of these organizations, and
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later considers how the resulting insights may be generalized to other organizations and sup-

port pandemic preparedness planning.

Testing process and context

In late February 2020, the University of Maryland recognized an emergent need for rapid

expansion of SARS-CoV-2 testing to meet the public health demand for pandemic surveillance

and response. Over the next 3 months, the Microbiome Service Laboratory at the Institute for

Genome Sciences, in collaboration with the University of Maryland Pathology Associates

(UMPA) and the Maryland Department of Health, scaled-up their high-throughput genomic

research laboratory operations. UMPA/MG is now a CLIA-certified high-complexity

laboratory.

The UMPA/MG adapted and implemented a RT-PCR test to detect SARS-CoV-2 in sam-

ples collected from nasopharyngeal or nasal swabs. This test is a high-throughput version of

the CDC 2019-nCoV Realtime RT-PCR test. It is authorized under the Emergency Use Autho-

rization (EUA) by the FDA and has performance characteristics that were established in accor-

dance with CLIA regulations. The test uses an assay that comprises three separate reactions

that measure the amount of two parts of the virus, the N1 and N3 regions of the N gene, and of

a human gene, RNaseP, which is used to assure the quality and integrity of the samples col-

lected. The test has been validated for samples collected in a variety of transport buffers as well

as self-collection.

SARS-CoV-2 RT-PCR testing is a complex ecosystem involving many stakeholders and

many different interrelated processes, illustrated in Fig 1. UMPA/MG provides testing for a

broad spectrum of clients, including nursing homes, correctional facilities, University of Mary-

land campuses and other private colleges and universities, urgent care practices, ‘spill-over’

from commercial laboratories, and public health testing sites. Samples are collected in each of

these settings, then transported to the laboratory for testing. The results are delivered to clients

and used for many purposes, including patient care, public health surveillance, and choices

about quarantine. All of these processes are supported by different information systems that

share data across these sites.

This paper focuses on the middle portion of this ecosystem: the laboratory itself and its

interfaces with the other elements of the system. Fig 2 shows the detailed sample collection

and testing process. Samples are first collected and shipped to the laboratory (blue boxes in

Fig 2). The specifics of this process differ across all the different collection sites. The figure

details the three primary processes. (1) At public community testing centers, such as the Balti-

more Convention Center, electronic orders are created in the medical information system. (2)

At universities, records are created ahead of time and simply matched to the testee when he or

she arrives for testing. (3) At nursing homes, correctional facilities, and other independent

facilities, different types of paper or electronic records may be used. In all cases, samples are

collected with nasal or nasopharyngeal swabs; the swabs are inserted into sample tubes, and

the tubes are capped and transported to the laboratory.

Next, accessioning (green boxes in Fig 2) involves matching the sample to a record in the

medical information system, and/or creating a record if it does not yet exist. This can be a very

time-consuming process, depending on the availability and validity of the paper or electronic

record for the sample. Accessioning is straightforward for samples from universities, whose

records were already created in the laboratory’s information system, and for community test-

ing, where electronic orders can be imported from the medical record system. However, it can

be very labor-intensive for other independent facilities, where paper records may be illegible

or contain mistakes, and electronic records may need to be created at the laboratory.
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After accessioning, the laboratory testing process begins. These steps are shown in yellow in

Fig 2, and Fig 3 provides photos of some of them. Samples are put into long racks and the bar-

codes on each sample tube are scanned into the laboratory information management system

(LIMS). Next, the sample tubes are uncapped and the swabs are removed from the tubes (i.e.,

the samples are “deswabbed”). This is a manual process that is tedious, and can be difficult and

time-consuming depending on the size of the swabs and tubes as well as the experience of the

technician. Fig 3 illustrates the variability in the shapes and sizes of tubes that might be sent to

the laboratory. While uniform requirements for the sample collection would be preferred, sup-

ply chain shortages have made it difficult to source sufficient quantities of the most preferred

equipment and supplies and thus a requirement to accept a variety of sample types. The racks

of tubes are then loaded onto a Hamilton STARlet automated liquid handling robot which will

transfer a 200μl aliquot of the sample to a single well in a 96-well plate. Filled deep-well plates

are transferred (manually) to a Hamilton STAR automated liquid handling robot (a larger

Fig 1. The testing ecosystem. Schematic representation of the SARS-CoV-2 testing system, including 1) a variety of

community and facility sites collecting samples for testing, which are transported to 2) a centralized SARS-CoV-2

testing laboratory, which completes the test and 3) delivers results back to the individual through multiple platforms.

Information systems link the different sectors.

https://doi.org/10.1371/journal.pone.0255214.g001
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instrument than the STARlet) for RNA extraction. In this process, RNA are eluted into a

96-well plate in the same well location as the originating plate. After RNA extraction, these

new plates are processed through a Mosquito automated liquid handling robot with the ability

to handle sub-microliter scale volume, to set up the qPCR reactions into 384-well plates. Each

RNA sample is divided among three wells used for each of the N1, N3 and RNaseP targets.

Using this scheme, a maximum of 96 samples/controls can be processed into one 384-well

plate. These 384-well plates are then loaded into a thermocycler instrument where the target

RNA is reversed transcribed, amplified and detected. After completion, the data are exported,

analyzed and the results reported. Any samples that are inconclusive, i.e., where the human

gene is not detected or where there are other problems, trigger the laboratory to retrieve the

original sample and retest it.

Challenges

The UMPA/MG laboratory, like many other academic, government, and commercial labora-

tories, faced challenges in meeting the demands of the COVID-19 pandemic. Operating proce-

dures had to be adapted for new and diverse clients and the throughput and turnaround time

requirements for public health surveillance efforts. Bottlenecks at the interfaces of the system

Fig 2. Sample collection and testing process. Steps performed at sample collection sites are shown in blue, sample

accessioning in green, and laboratory steps in yellow.

https://doi.org/10.1371/journal.pone.0255214.g002
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elements (Fig 1) and within the UMPA/MG laboratory were encountered and required rapid

troubleshooting.

A key challenge was dealing with the fluctuations and surges in COVID-19 testing demand

and, consequently, managing the implications of this variability on the laboratory operations.

Fig 4 shows the total daily and weekly numbers of samples that arrived at the laboratory for

testing during a six-week period in November and December 2020. The weekly demand ran-

ged from a low of around 15,000 samples over the Thanksgiving holiday to a high of around

44,000 samples in the week leading up to Christmas, when the region experienced a significant

surge in cases. The daily demand also varied between different days of the week, with Fridays

typically experiencing the largest-demand followed by low-demand weekends.

This erratic sample volume impacted UMPA/MG’s operations because it required rapid

adjustments in resources to meet this varying demand. For example, the significant increase in

weekly demand during the 2020 holiday season (shown in Fig 4) required sourcing additional

essential supplies that had already been difficult to acquire during the pandemic (such as plas-

tic tips and deep-well plates) and required already-stretched staff to work extended shifts. The

fluctuation in daily demand meant that it was difficult to predict the number of samples that

would be arriving each day, and therefore it was difficult to set staff schedules and plan supplies

to meet each day’s demand. These challenges, in turn, affected the time it took to return test

results, since days with large demand might create backlogs of samples waiting for processing,

while capacity sits idle on low-demand days. Fig 5 shows the variability in turnaround times

Fig 3. Laboratory process steps. (Top left) Samples racked and scanned; note the many different sizes and shapes.

(Top right) Tubes are uncapped and deswabbed manually then placed on the deck of the Hamilton STARlet for

transfer to deep-well plates. (Bottom left) Deep-well plates stacked in front of a Hamilton STAR for RNA extraction.

(Bottom right) qPCR in progress and completed.

https://doi.org/10.1371/journal.pone.0255214.g003
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during the same six weeks leading up to the holidays, and highlights how the large surge in the

week before Christmas led to increased and more variable turnaround times. This laboratory

was able to keep turnaround times around 24–48 hours in most cases, but many commercial

laboratories had much higher turnaround times, suggesting that they suffered from similar but

more acute problems.

Methodology

Model

A discrete event simulation (DES) model was developed to represent the UMPA/MG testing

operations depicted in Fig 2. It simulates the flow of samples through the system, including

queues where samples must wait when the next processing step is busy, and variability in both

the demand for testing and the time taken by processing steps. As such, it provides an estimate

of laboratory capacity and result turnaround time that takes into account the operational diffi-

culties of implementing the testing process. The model contains two major blocks. Block 1

includes the processes at the collection sites (patients arrive for testing and samples are col-

lected, shown in blue in Fig 2), and Block 2 entails the accessioning, laboratory, and result

reporting procedures in the laboratory (shown in green and yellow in Fig 2).

Each of these blocks consists of entities, process steps, connectors, resources and batching
nodes. The model represents patients and samples as entities. Patients become samples once

the samples are collected in the collection sites. These entities flow through the process steps
(i.e., sample accessioning, deswabbing, etc.) and are transferred from one process step to

another, following a sequence, via probability-weighted connectors. At each process step,

machines and technicians process these entities, following a certain work schedule; these are

modeled as resources. Each of these resources has a capacity (e.g., number of machines, capacity

of each machine, number of technicians, etc.). Finally, in between some of the process steps,

Fig 4. Number of samples arriving for testing at UMPA/MG weekly (line) and daily (bars) during a six-week period in November and December

2020.

https://doi.org/10.1371/journal.pone.0255214.g004
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batching nodes are used to model the batching of samples that takes place in the laboratory.

Since samples may need to wait to be processed, queues are defined at each process step. A

ranking rule of first in first out (FIFO) at each queue in a process step is assigned, so that sam-

ples are processed in the same order that they arrive. Thus, the simulation model represents

the flow of samples through the multiple steps included in the testing and lab processing sys-

tems (Fig 2).

The simulation model was developed in SIMIO, a commercially available DES package.

Parameters and key performance indicators

The following types of input parameters are defined: (1) patient and sample arrival rates; (2)

processing times for each process step; (3) resource capacities per process step; (4) shift length

and work schedules; (5) positivity rate; (6) inconclusive test rate; (7) demand surge factors; (8)

batch sizes. Each of these parameters was estimated through the analysis of historical data, on-

site observations, and stakeholder estimates. Many of these parameters are represented by dis-

tributions rather than fixed values, to represent realistic variability, for example, how often

patients arrive for testing, or how long it takes to remove a swab from a sample tube. The val-

ues for these parameters are given in Table 1 and/or in S1 File.

Fig 5. Time to return results at UMPA/MG during a six-week period in November and December 2020.

https://doi.org/10.1371/journal.pone.0255214.g005
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Three main key performance indicators (KPIs) for the testing system were developed.

These KPIs were determined based on the most important ways the laboratory measures its

performance and the information needed to identify bottlenecks and improve the process. The

KPIs are: (1) total number of tests conducted per week; (2) average turn-around time (TAT) to

return results from sample collection; and (3) percent utilization of resources (such as person-

nel or robots) at each step in the process.

The simulation model enables estimates of the performance of the laboratory under differ-

ent sets of hypothetical conditions (scenarios). For a single scenario, such as the baseline inputs

described in Table 1, the model estimates the KPIs by simulating the arrival of thousands of

patients at random times during one week of operations, then representing all the process

steps that occur for each patient and their sample, including the usage of instruments and tech-

nician time, the time elapsed at each step, and any queues that build up while samples are wait-

ing. The model is run multiple times so that a distribution and summary statistics can be

computed for the KPIs. Then, the input parameters can be changed to represent a different

scenario (for example, a longer work shift) and the process repeated, to determine whether the

performance improves for this alternative “what-if” scenario.

For each scenario, 100 runs are performed, and the KPIs are computed from the average

across the runs. Specifically, (1) the total number of tests conducted in one week is reported

directly by the model. (2) The average TAT is computed by subtracting, for each sample, the

time at which the sample was collected from the time at which the result was returned, then

averaging across all the samples in each run. (3) The percent utilization of resources is computed

by dividing the total amount of time each resource was busy by the total amount of time each

resource was available (whether busy or not). For example, each STAR robot is considered avail-

able for 8 hours per day (the length of the work shift). It is considered “busy” only when it is pro-

cessing plates. If there is one STAR robot, and it processes four batches which each requires 1.5

hours, then it is busy for six hours, its availability is 8 hours, and its percent utilization is 75%.

Verification and validation

Verification and validation ensures that the model represents the process and meets stake-

holder needs. First, each step of the model was verified to match the process depicted in Fig 2.

Table 1. Baseline parameters.

Parameter Assumption(s)

Sample arrivals Poisson arrival process, with approximately 26,800

arriving per week

Sample accessioning (nursing homes and similar facilities)

processing time and capacity

3–5 minutes/sample; 33 technicians

Sample accessioning (community testing) processing time and

capacity

30 seconds/sample; 33 technicians

Uncapping processing time and capacity 1–2 seconds/sample; 2 technicians

Deswabbing processing time and capacity 3–30 seconds/sample (varies with type of swab); 2

technicians

Sample transfer to deep-well plates (STARlet) processing time

and capacity

15 minutes per plate of 96 samples; 3 instruments

RNA extraction (STAR) processing time and capacity 1.5 hours/batch; 6 instruments

qPCR processing time, capacity and batch size 1.25 hours/batch; 16 instruments; 96 samples per

batch

Lab shift length 8 hours per day

https://doi.org/10.1371/journal.pone.0255214.t001
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Second, the model was validated through (a) comparing the model’s simulated output to

empirical data from the laboratory and (b) validating the results with stakeholders.

Regarding the first step (a), two performance indicators were used in this comparison:

number of tests conducted per week and result turn-around time. The model closely repro-

duces the median turnaround time and the total number of tests conducted in 6 weeks of labo-

ratory operations, and it reaches its maximum capacity at roughly the same number of tests

per week. Fig 6 is provided as an example of the validation process: it compares the model’s

simulated output to the empirical data for the number of tests per week in each of six weeks of

real operations and two hypothetical higher-demand scenarios (to validate that the model

reproduces the laboratory’s maximum weekly testing capacity).

Regarding the second step (b), we conducted a workshop with stakeholders from across the

laboratory. They validated the assumptions on inputs (such as processing times and number of

resources) and stated that the model outputs were reasonable, based on their daily experiences

in the laboratory. They also confirmed that the first bottleneck identified by the model (see the

results section, below) is also seen as a bottleneck by the stakeholders.

Scenarios and results

To identify opportunities for scaling up testing capacity and improving the process efficiency,

we performed several analyses: (1) identifying and eliminating successive bottlenecks in the

UMPA/MG laboratory to increase the overall capacity; (2) examining the impact of variability

in demand on laboratory performance; and (3) determining the minimum equipment, person-

nel, and process configurations to meet several target levels of laboratory capacity. Each analysis

includes a series of “what-if” scenarios that are evaluated using the DES model under different

assumptions about the process and resource configuration and the demand for testing.

The baseline assumptions in each case were the same, except where noted. These baseline

assumptions represent the current operations of the UMPA/MG laboratory. Sample arrivals

follow a Poisson process which is adjusted to simulate various levels of demand for testing.

Other baseline assumptions are listed in Table 1, and the full set of assumptions for the model

is provided in the tables in S1 File. To evaluate each “what-if” scenario, the model was run for

one week with a warm-up period of 8 hours.

Analysis 1: Scaling up capacity by eliminating bottlenecks

The first analysis examines the current process at the UMPA/MG laboratory to identify the

bottlenecks that constrain capacity and find ways to alleviate them. The results show what pro-

cess changes or investments would be required to meet a given target weekly testing capacity.

Fig 6. Example of validation results. The model reproduces the empirical data from six weeks of varying demand and

two hypothetical higher-demand scenarios.

https://doi.org/10.1371/journal.pone.0255214.g006
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First, the baseline scenario was simulated with multiple levels of demand, to determine the

impact of different testing demand levels on the KPIs and to identify the lab’s overall capacity.

Demand levels were set to correspond to a typical week, double the demand of a typical week,

and more than triple the demand of a typical week (to significantly stress the system). The

results are shown in Fig 7. Fig 7a shows that the maximum capacity is about 33,000 samples

per week. Fig 7b shows that when the laboratory is operating at or below its capacity, the result

turnaround time is well under 24 hours (its target). However, when demand for testing

exceeds the laboratory’s capacity, the result turnaround time grows beyond 24 hours because

samples are backed up waiting for processing.

Fig 7c shows which step is the bottleneck that constrains the overall capacity of the labora-

tory. The percent utilization is the percentage of time that any given process step is “busy”: for

example, the percentage of time that the STARlet robot is being used to process samples.

When a process step is busy nearly 100% of the time, it is acting as a bottleneck, because sam-

ples are likely queuing to wait for their turn in that step. Fig 7c shows that the deswabbing step

Fig 7. KPIs for the baseline scenario that represents current UMPA/MG operations. (a) Tests conducted per week. (b) Average turnaround time

from collection to result. (c) Percent utilization of resources at each process step (e.g., technicians or robots).

https://doi.org/10.1371/journal.pone.0255214.g007
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is utilized at a much higher rate than the other steps, and reaches 100% utilization at the

medium demand scenario. Therefore, it is acting as the bottleneck.

With a bottleneck identified, the next step is to consider alleviating this bottleneck to

expand the overall capacity of the laboratory. After one bottleneck is alleviated, others will

arise that limit the laboratory’s capacity to a different (higher) number of tests per week. We

ran a series of what-if scenarios to find and eliminate successive bottlenecks, following the

same approach as the analysis just described. The strategies for eliminating each bottleneck

were suggested by laboratory stakeholders. The analyses and results are summarized in

Table 2. Fig 8 shows the changes in capacity as successive bottlenecks are eliminated.

Table 2 and Fig 8 show that deswabbing is the most critical bottleneck: reducing the need

for deswabbing by 70% (or, equivalently, increasing deswabbing capacity) can almost double

the capacity of the entire laboratory, from 33,000 to 63,000 tests per week (Scenario 1). With

different amounts of reduction in deswabbing requirements or increases in deswabbing capac-

ity (not shown), the lab’s overall capacity changes fairly linearly until it reaches the next

bottleneck.

Once the need for deswabbing is reduced to around 30% of samples, a new bottleneck

arises: the capacity of the STARlet robots to transfer samples to deep-well plates. A further

slight increase in capacity can be achieved by repurposing a STAR robot to perform this func-

tion (Scenario 2). Further significant increases in capacity require investing in additional per-

sonnel time and/or robots to alleviate simultaneous bottlenecks at three steps: sample transfer

to deep-well plates (STARlet), RNA extraction (STAR), and qPCR. For example, a further

moderate increase can be achieved by increasing shift lengths to 10 hours for just the upstream

process steps (up to and including the STARlet) and multiplexing the assay to double the PCR

capacity. Further increases in capacity would require more significant investments in addi-

tional robots and/or personnel time, or a new “evening shift” of workers so that existing equip-

ment could be put to use for more of the hours in each 24-hour period.

Table 2. Capacity and bottlenecks with various process modifications.

No. Scenario Assumptions Capacity

(tests per

week)

Bottleneck(s)

0 Baseline See Table 1 33,000 Deswabbing

1 Only 30% of samples need deswabbing For 70% of the samples, deswabbing is not needed

because swabs are discarded when samples are collected

63,000 Sample transfer to deep-well

plates (STARlet)

2 Only 30% of samples need deswabbing and
repurpose one STAR to transfer samples to deep-

well plates

Same as Scenario 1, and one STAR instrument is

repurposed to transfer samples to deep-well plates

(rather than RNA extraction)

69,800 Sample transfer to deep-well

plates (STARlet), RNA

extraction (STAR), qPCR

3 Only 30% of samples need deswabbing and
repurpose one STAR to transfer samples to deep-

well plates and multiplex assay

Same as Scenario 2, and multiplex the assay to use 2 wells

instead of 3 wells, which doubles the throughput at qPCR

69,900 Sample transfer to deep-well

plates (STARlet), RNA

extraction (STAR)

4 Only 30% of samples need deswabbing and
repurpose one STAR to transfer samples to deep-

well plates and 10-hour shifts for upstream process

Same as Scenario 2, and the shift length for all

“upstream” steps - - those from the start of the lab

process up to and including sample transfer to deep-well

plates (STARlet) - - is extended to 10 hours.

70,000 RNA extraction (STAR), qPCR

5 Only 30% of samples need deswabbing and
10-hour shifts for upstream process

Same as Scenario 1, and the shift length for all

“upstream” steps - - those from the start of the lab

process up to and including sample transfer to deep-well

plates (STARlet) - - is extended to 10 hours.

77,700 Sample transfer to deep-well

plates (STARlet), qPCR

6 Only 30% of samples need deswabbing and
10-hour shifts for upstream process and multiplex

assay

Same as Scenario 5, and multiplex the assay to use 2 wells

instead of 3 wells, which doubles the throughput at qPCR

78,800 Sample transfer to deep-well

plates (STARlet)

https://doi.org/10.1371/journal.pone.0255214.t002
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Analysis 2: Impact of demand variability

The second analysis examines the impact of variability in daily demand for testing on the per-

formance of the laboratory. Recall that the number of samples arriving at the laboratory for

testing each day varied widely (Fig 4). Analysis 1, above, assumed approximately constant

demand for testing each day; this analysis shows how variability impacts the laboratory’s

performance.

For clarity, we analyze a simple variability scenario, in which a single large “spike” in

demand is seen on day 3 of the analyzed week, while the demand on other days remains con-

stant (at the daily level seen in a typical week with a demand of 26,800). This was compared to

a scenario with the same total weekly demand (including the spike) spread evenly across all the

days.

The results show that this variability in demand has a major impact on the turnaround time

for returning results. Fig 9 shows the turnaround times for Scenario 1 (described in Table 2),

where only 30% of samples need deswabbing. When the demand is highly variable, i.e., when it

includes a one-day spike, the turnaround times exceed the 24-hour target at much lower weekly

demand levels than when the demand is evenly spread across the week. Therefore, although

Analysis 1 found that Scenario 1’s weekly capacity is 63,000, large variability in demand reduces
its effective capacity if 24-hour turnaround times are required - - in this case, to less than

53,800. Thus, demand variability increases turnaround times when the total demand is near the

total capacity of the lab. Once samples are backed up waiting for a process step to be available, it

can be hard to “catch up” as new samples are continually arriving. Therefore, when large vari-

ability in demand is expected, more capacity is needed if reliable 24-hour turnaround times are

desired. The average utilization rate of each process step should be much lower than 90% - - in

other words, some steps will not be busy some of the time - - so that there is sufficient capacity

to handle high-demand days while maintaining 24-hour turnaround times.

Analysis 3: Minimum resources to meet a target capacity

The third analysis determines the minimum set of resources (people and instruments)

required for a laboratory to meet a target weekly testing capacity. The results provide a guide

for scaling up capacity for any laboratory following a sufficiently similar process.

Fig 8. Changes in capacity resulting from various process modifications.

https://doi.org/10.1371/journal.pone.0255214.g008
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We define a “resource unit” as the smallest possible unit of capacity that could be added to

the process. For example, a “resource unit” is a single robot/instrument or a single full-time

lab technician if the process step is manual. (Technician hours could be reduced below full

time, or smaller sizes of robots/instruments could be purchased, but these options were not

considered in this analysis.)

The same three levels of weekly demand are considered as in Analysis 1, and these are

treated as targets. For each target, a series of what-if scenarios were evaluated in the model.

The first scenario contained just one resource unit for each step in the process. The succeeding

scenarios added single resource units for any steps that were utilized more than 90% of the

time (because they were acting as a bottleneck and constraining system capacity). The process

was repeated until all process steps were utilized less than 90% of the time. The resulting num-

ber of resource units represents the minimum resources required to meet the target weekly

demand. The same analysis was also performed with a utilization threshold of 70%, which pro-

vides better robustness to variability in demand.

The results are shown in Table 3. These results can guide the laboratory in making invest-

ments in instruments and hiring to meet a particular target capacity. For example, the lab cur-

rently has sufficient instruments to meet a target capacity of 53,800, but not enough

Fig 9. Average turnaround time for demand scenarios with one-day spikes compared to evenly spread demand,

for Scenario 1.

https://doi.org/10.1371/journal.pone.0255214.g009

Table 3. Minimum resources required to meet target levels of demand (8-hour shifts).

Target Capacity Utilization Threshold Capacity of Process Step (Resource Units)

Man.+ Rack+ Scan

(Techs)

Uncap

(Techs)

Deswab

(Techs)

STARlet�

(Instr.)

STAR�

(Instr.)

Mosq.�

(Instr.)

qPCR�

(Instr.)

26,800 90% 1 1 2 2 3 1 8

26,800 70% 1 1 2 2 3 1 10

53,800 90% 2 1 4 3 5 2 15

53,800 70% 2 2 5 4 6 2 18

94,000 90% 3 2 7 5 8 3 26

94,000 70% 3 2 8 7 10 4 32

� Instruments also require technicians to run the instruments, but a single technician can run several instruments at once. These technicians are not accounted for in

this analysis.

https://doi.org/10.1371/journal.pone.0255214.t003
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deswabbing technicians. To meet this target capacity, they would need to hire (or repurpose)

two additional technicians for deswabbing. These results are also useful beyond the laboratory

we studied, as a benchmark for resource investment, to the extent that the process steps and

resource units are similar across laboratories. This is likely to be the case, since the same funda-

mental steps are always carried out, but there are some important potential variations. First,

there are multiple options for robotic liquid handling robots, which could replace the Hamil-

ton STAR and STARlet, and they might have different capacities. Second, different assays uti-

lize different numbers of wells on the plates, and different laboratories may use different plate

sizes. It is relatively simple to modify the model to account for these differences, but there are

too many possibilities to analyze in this paper.

Sensitivity to key assumptions

The model is particularly sensitive to the assumed time it takes to deswab a sample tube,

because this is a major bottleneck. This assumption is also particularly uncertain. Experts

noted that the technicians had gotten much faster at deswabbing over time and that the time

also depended on the characteristics of the swab and sample tube, which varied because multi-

ple different products were used. In applying these results, it is important to consider the

potential differences in deswabbing times and the level of experience of the operator.

The capacity of the laboratory also depends strongly on the assumed shift length per day.

The results can be scaled for different shift length assumptions, since the capacity will scale

with the shift length.

Discussion and conclusions

Testing for COVID-19 in support of large-scale public health needs, such as surveillance and

mitigation, represents a quintessential complex adaptive system, as illustrated in Fig 1. Recent

scholarly work has emphasized the value of systems thinking for responding to the COVID-19

pandemic [e.g., 16–19]. The current testing response, with capacity shortages and long turn-

around times, suggests gaps in operational planning and decision making that obstructed

rapid and effective service delivery in a complex and somewhat weakened hybrid public/pri-

vate health system.

To address this gap, we explored one aspect of the testing system by evaluating the impact

of the dynamics of the COVID-19 pandemic on the needs and capacity for testing at a large,

retrofitted academic lab—one of many that were required to quickly pivot from a research to a

public service laboratory. Using simulation models of the testing process, we were able to

make both specific process adaptation recommendations and elucidate general insights into

COVID-19 testing dynamics by evaluating different what-if scenarios. When calibrated to the

characteristics of the operational protocols from a particular laboratory, what-if scenarios

informed performance gains or losses (in capacity and turnaround time) when making various

changes to (a) the process itself and/or (b) the resources assigned to the process, or (c) when

dealing with changes in the environment.
For example, when Analysis 1 showed that a near-doubling of capacity could be achieved

by alleviating a key bottleneck at deswabbing, the lab investigated different strategies to address

this, including hiring additional personnel or asking collection sites to discard swabs rather

than leaving them in sample tubes. The latter was chosen because it was cheaper, after the labo-

ratory found a way to avoid biohazard disposal requirements at testing sites by using a collec-

tion buffer that inhibits the virus on contact. Similarly, instruments with lower utilization rates

were repurposed to perform a different function after our results showed potential gains in

capacity, obviating the need to purchase new capital equipment to meet a temporary increase
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in utilization. A broader principle illustrated by these analyses is that simple process changes

can make a profound performance difference without significant financial investment. On the

other hand, other process changes were unexpectedly un-impactful. Multiplexing the assay to

double the throughput at the qPCR step showed very little potential to improve the overall lab-

oratory capacity because this step was not a key bottleneck at this laboratory, which already

had plenty of PCR machines (though multiplexing could still improve cost and supply require-

ments). Because the model predicted limited impact, the laboratory did not need to make the

investment to design and deploy a multiplexed assay.

A second principle illustrated by our findings is that high variability in demand for testing,

which is inevitable in a rapidly evolving pandemic situation, has a large impact on perfor-

mance. When trying to achieve stable, short turnaround times, planning for this variability

and building in buffer capacity is crucial to system resilience.

These results and this approach are not limited to just one specific laboratory. The steps in

the RT-PCR testing process are similar across most laboratories, and while there may be

minor differences in the equipment and batch sizes, broad generalizations—or “rules of

thumb”—can be distilled from the simulation output. For example, for labs performing similar

processes (e.g., automated liquid handling, RNA extraction, and RT-PCR), the analysis of min-

imum resources required to meet a target capacity (Analysis 3) may be used as a benchmark

for planning. Where necessary, it is also straightforward to adapt the model directly to other

laboratory operational processes. Relatively little data would be needed, such as: instrument

capacities, number of instruments, number of staff, time to perform each step, batching and

pooling strategies, shift lengths, and positivity and inconclusivity rates (see S1 File). These data

should be readily available or easily measurable at most laboratories. Even in circumstances

where developing or adapting a model to a different operational protocol is not feasible, our

work shows the relative ease and value of using our analytical approach to evaluate the testing

process and resources. Specifically, we have clarified the key performance indicators and the

fundamental process steps. The KPIs could be routinely collected and monitored in testing lab-

oratories to identify bottlenecks whose alleviation could improve capacity or speed results

return.

In general, our pilot experience demonstrates the utility of process simulation models as

decision support tools in this context. They can highlight multiple ways to achieve perfor-

mance improvements, and simulate the impact of using one versus another using readily avail-

able data, to surface and quantify the trade-offs associated with each option (in performance,

cost, and complexity). These results may then be used to guide decision-making. By using the

simulation models as decision support tools, the impact of a rapidly changing context (e.g.,

variability in testing demand and resource availability) can be rapidly investigated, enabling

decision-making even in the face of uncertainty. The models also enabled decision-makers to

move past strong opinions and assumptions to explore their options using data-informed

model outputs. Critically, simulation outputs allow decision-makers to virtually ‘test’ different

adaptations to the system before a significant (and possibly hard to reverse) investment or dis-

ruption to real operational processes is implemented. Our pilot work provides proof of princi-

ple that stakeholders gained insight and value from the simulation models and the meetings

and workshops in which the results were discussed. Our experience suggests that similar par-

ticipatory process modeling efforts will yield high value to current and future pandemic

response and preparedness, as well as to increased efficiencies in screening and diagnostic test-

ing in public health and healthcare settings in the United States and abroad.

Moving forward, we recognize many opportunities to refine and broaden this analysis of

operational processes for COVID-19 RT-PCR testing. One priority is to analyze additional

process changes in the laboratory, such as pooled testing [11, 12] and prioritization of specific
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groups of samples [8–10]. A second priority is to explore the impact of other environmental

conditions, such as wider variation in demand and processing times, as might be seen during

scale-up or in low- and middle-income countries. A third priority is to further characterize the

impact of demand variability, and to develop a generalizable “rule of thumb” for the appropri-

ate target utilization rate for process steps, based on the variability in testing demand. A fourth

priority is to refine and validate the generalizability of the laboratory process model to enable

the development of an online ‘dashboard’ to help other laboratories plan for deployment of

public health services as needed. Finally, for this pilot study, we focused almost exclusively on

the processes within the testing laboratory. Future work to extend the boundaries to integrate

the processes from other elements of the testing (Fig 1), including sample collection and

response to positive tests (e.g., quarantine), can provide insight into how operational decisions

in each sector impact the others and ultimately impact the overall effectiveness of COVID-19

testing in mitigating community spread of infection. This would enable a more holistic view of

tradeoffs between testing capacity investment and other mitigation measures, and show what

the target capacity should be and can be under different resource scenarios to meet the desired

goals of mitigation and containment.

Despite ready access to state-of-the-art molecular technologies, COVID-19 RT-PCR testing

capacity has fallen far short of the need in the United States to allow for a safe re-opening of

society during the COVID-19 pandemic. In preparation for a potential future pandemic, it is

crucial to learn from these shortcomings and to set up policies, operational plans, and

resources for rapid scale-up of testing capacity. This study has demonstrated a valuable but

under-utilized role for operations research in this effort, and provided an approach that could

be used to study other laboratories operating under different contexts. Applying the approach

broadly could facilitate a retrospective evaluation of testing processes and their performance.

Such a “forensic” analysis, combined with forward-looking scenario analyses, would provide

valuable insights for preparedness planning and standard operating procedures to facilitate a

future rapid deployment of a “public health testing reserve” in the event of future pandemic

threats.

Supporting information

S1 File. Modeling assumptions. Details the assumptions used in the model.

(PDF)
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