<  Retour au portail Polytechnique Montréal

Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue

Alireza Akbarzadeh, Ehsan Edjlali, Guillaume Sheehy, Juliette Selb, Rajeev Agarwal, Jessie Weber et Frédéric Leblond

Article de revue (2020)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Significance: Raman spectroscopy (RS) applied to surgical guidance is attracting attention among scientists in biomedical optics. Offering a computational platform for studying depthresolved RS and probing molecular specificity of different tissue layers is of crucial importance to increase the precision of these techniques and facilitate their clinical adoption. Aim: The aim of this work was to present a rigorous analysis of inelastic scattering depth sampling and elucidate the relationship between sensing depth of the Raman effect and optical properties of the tissue under interrogation.

Approach: A new Monte Carlo (MC) package was developed to simulate absorption, fluorescence, elastic, and inelastic scattering of light in tissue. The validity of the MC algorithm was demonstrated by comparison with experimental Raman spectra in phantoms of known optical properties using nylon and polydimethylsiloxane as Raman-active compounds. A series of MC simulations were performed to study the effects of optical properties on Raman sensing depth for an imaging geometry consistent with single-point detection using a handheld fiber optics probe system.

Results: The MC code was used to estimate the Raman sensing depth of a handheld fiber optics system. For absorption and reduced scattering coefficients of 0.001 and 1 mm−1, the sensing depth varied from 105 to 225 μm for a range of Raman probabilities from 10−6 to 10−3. Further, for a realistic Raman probability of 10−6, the sensing depth ranged between 10 and 600 μm for the range of absorption coefficients 0.001 to 1.4 mm−1 and reduced scattering coefficients of 0.5 to 30 mm−1.

Conclusions: A spectroscopic MC light transport simulation platform was developed and validated against experimental measurements in tissue phantoms and used to predict depth sensing in tissue. It is hoped that the current package and reported results provide the research community with an effective simulating tool to improve the development of clinical applications of RS.

Mots clés

Raman spectroscopy; elastic scattering; fluorescence; Monte Carlo simulation; tissue optics; metrology

Sujet(s): 3100 Physique > 3100 Physique
3100 Physique > 3111 Laser
3100 Physique > 3113 Biophysique
Département: Département de génie physique
Organismes subventionnaires: CRSNG / NSERC - Discovery Grant Program, TransMedTech Institute, MITACS, Institut National d’Optique (INO)
URL de PolyPublie: https://publications.polymtl.ca/9338/
Titre de la revue: Journal of Biomedical Optics (vol. 25, no 10)
DOI: 10.1117/1.jbo.25.10.105002
URL officielle: https://doi.org/10.1117/1.jbo.25.10.105002
Date du dépôt: 16 août 2023 16:40
Dernière modification: 08 avr. 2024 23:50
Citer en APA 7: Akbarzadeh, A., Edjlali, E., Sheehy, G., Selb, J., Agarwal, R., Weber, J., & Leblond, F. (2020). Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue. Journal of Biomedical Optics, 25(10), 105002 (19 pages). https://doi.org/10.1117/1.jbo.25.10.105002

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document