Golnoosh Farnadi, Behrouz Babaki et Michel Gendreau
Communication écrite (2020)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (348kB) |
Abstract
The problem of selecting a subset of nodes with greatest influence in a graph, commonly known as influence maximization, has been well studied over the past decade. This problem has real world applications which can potentially affect lives of individuals. Algorithmic decision making in such domains raises concerns about their societal implications. One of these concerns, which surprisingly has only received limited attention so far, is algorithmic bias and fairness. We propose a flexible framework that extends and unifies the existing works in fairness-aware influence maximization. This framework is based on an integer programming formulation of the influence maximization problem. The fairness requirements are enforced by adding linear constraints or modifying the objective function. Contrary to the previous work which designs specific algorithms for each variant, we develop a formalism which is general enough for specifying different notions of fairness. A problem defined in this formalism can be then solved using efficient mixed integer programming solvers. The experimental evaluation indicates that our framework not only is general but also is competitive with existing algorithms.
Mots clés
Sujet(s): |
2700 Technologie de l'information > 2700 Technologie de l'information 2700 Technologie de l'information > 2713 Algorithmes 2700 Technologie de l'information > 2717 Études de modélisation et de simulation |
---|---|
Département: | Département de génie informatique et génie logiciel |
Centre de recherche: | Autre |
Organismes subventionnaires: | Canada First Research Excellence Fund (CFREF), Calcul Québec, Compute Canada |
ISBN: | 978-1-4503-7024-0 |
URL de PolyPublie: | https://publications.polymtl.ca/9245/ |
Nom de la conférence: | WWW '20: The Web Conference 2020 |
Lieu de la conférence: | Taipei, Taiwan |
Date(s) de la conférence: | 2020-04-20 - 2020-04-24 |
Maison d'édition: | Association for Computing Machinery |
DOI: | 10.1145/3366424.3383555 |
URL officielle: | https://doi.org/10.1145/3366424.3383555 |
Date du dépôt: | 22 nov. 2021 14:00 |
Dernière modification: | 03 déc. 2024 11:34 |
Citer en APA 7: | Farnadi, G., Babaki, B., & Gendreau, M. (avril 2020). A unifying framework for fairness-aware influence maximization [Communication écrite]. WWW '20: The Web Conference 2020, Taipei, Taiwan. https://doi.org/10.1145/3366424.3383555 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions