Bruno Blais, Jean-Michel Tucny, David Vidal et François Bertrand
Article de revue (2015)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (561kB) |
Abstract
The volume-averaged Navier–Stokes (VANS) equations are at the basis of numerous models used to investigate flows in porous media or systems containing multiple phases, one of which is made of solid particles. Although they are traditionally solved using the finite volume, finite difference or finite element method, the lattice Boltzmann method is an interesting alternative solver for these equations since it is explicit and highly parallelizable. In this work, we first show that the most common implementation of the VANS equations in the LBM, based on a redefined collision operator, is not valid in the case of spatially varying void fractions. This is illustrated through five test cases designed using the so-called method of manufactured solutions. We then present an LBM scheme for these equations based on a novel collision operator. Using the Chapman–Enskog expansion and the same five test cases, we show that this scheme is second-order accurate, explicit and stable for large void fraction gradients.
Mots clés
Computational fluid dynamics; Volume-averaged Navier–Stokes equations; Lattice Boltzmann method; Method of manufactured solutions; Multiphase flowsPorous media
Sujet(s): | 1800 Génie chimique > 1800 Génie chimique |
---|---|
Département: | Département de génie chimique |
Centre de recherche: | URPEI - Unité de recherche en procédés d'écoulements industriels |
Organismes subventionnaires: | CRSNG/NSERC, CRSNG/NSERC - Vanier Scholarship |
Numéro de subvention: | RGPIN-2014-05056) |
URL de PolyPublie: | https://publications.polymtl.ca/9063/ |
Titre de la revue: | Journal of Computational Physics (vol. 294) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.jcp.2015.03.036 |
URL officielle: | https://doi.org/10.1016/j.jcp.2015.03.036 |
Date du dépôt: | 11 août 2021 17:37 |
Dernière modification: | 26 sept. 2024 15:26 |
Citer en APA 7: | Blais, B., Tucny, J.-M., Vidal, D., & Bertrand, F. (2015). A conservative lattice Boltzmann model for the volume-averaged Navier–Stokes equations based on a novel collision operator. Journal of Computational Physics, 294, 258-273. https://doi.org/10.1016/j.jcp.2015.03.036 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions