Laura Prieto Saavedra, Peter Münch et Bruno Blais
Article de revue (2025)
|
|
Accès restreint: Personnel autorisé jusqu'au 16 juin 2027 Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Demander document |
Abstract
We present an efficient solver for the incompressible Navier-Stokes equations implemented in a matrix-free fashion. It uses a higher-order continuous Galerkin finite element method for the space discretization and leverages a stabilized formulation that includes both the SUPG and PSPG terms. We solve the non-linear problem in a fully coupled way, using a Newton-Krylov method, which is preconditioned by a monolithic geometric multigrid solver. To evaluate its efficiency in terms of time to solution and scalability on modern high-performance computers, we use a manufactured solution, a steady flow around a sphere with Reynolds number Re = 150 and the Taylor–Green vortex benchmark at Re = 1 600. The results indicate that the solver is robust and scales for both steady-state and transient problems. We compare the matrix-free solver to a matrix-based version and show it exhibits lower memory requirements, better scalability, and significant speedups (10–100× for higher-order elements). Moreover, we demonstrate that a matrix-free implementation is highly efficient when using higher-order elements, which provide higher accuracy at a lower number of degrees of freedom for complex steady problems. To the best of our knowledge, this work is the first that uses a matrix-free monolithic geometric multigrid preconditioner to solve the stabilized Navier-Stokes equations. All implementations are available via the open-source software Lethe.
Mots clés
| Renseignements supplémentaires: | CHAOS Laboratory |
|---|---|
| Département: | Département de génie chimique |
| Centre de recherche: | Autre |
| Organismes subventionnaires: | NSERC, Multiphysics Multiphase Intensification Automatization Workbench (MMIAOW), Canadian Research Chair Level 2 in computer-assisted design and scale-up of alternative energy vectors for sustainable chemical processes, Swedish Research Council (VR), Uppsala University |
| Numéro de subvention: | RGPIN-2020-04510, CRC-2022-00340, 2021–04620 |
| URL de PolyPublie: | https://publications.polymtl.ca/66283/ |
| Titre de la revue: | Journal of Computational Physics (vol. 538) |
| Maison d'édition: | Academic Press |
| DOI: | 10.1016/j.jcp.2025.114186 |
| URL officielle: | https://doi.org/10.1016/j.jcp.2025.114186 |
| Date du dépôt: | 26 juin 2025 16:33 |
| Dernière modification: | 11 nov. 2025 18:47 |
| Citer en APA 7: | Prieto Saavedra, L., Münch, P., & Blais, B. (2025). A matrix-free stabilized solver for the incompressible Navier-Stokes equations. Journal of Computational Physics, 538, 114186 (24 pages). https://doi.org/10.1016/j.jcp.2025.114186 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
