<  Retour au portail Polytechnique Montréal

Long short-term memory neural network combined with a hybrid-modular clockwork structure for transient modeling of nonlinear circuits

Razieh Moradi Chaleshtori, Amin Saboohi, Amin Faraji, Sayed Alireza Sadrossadat, Ali Moftakharzadeh et Yvon Savaria

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

This paper presents a novel macromodeling method and neural network structure called Clockwork Long Short-Term Memory (CWLSTM), tailored for high-speed nonlinear circuits. The proposed CWLSTM method is considered a more powerful yet simpler model than conventional LSTM due to its reduced parameter count and more efficient structure and training strategy. This structure promotes improved model generalization, resulting in better model accuracy and training time due to its unique modular gating connections. Additionally, the required training data is considerably reduced for generating a model with similar accuracy compared to the conventional LSTM. To further improve the proposed method, a hybrid version of CWLSTM, known as Hybrid-Modular CWLSTM, is introduced, utilizing various module types to enhance the model’s accuracy further. The reported experimental results reveal the superior performance of the proposed methods compared to the conventional LSTM in modeling high-speed nonlinear circuits. On top of the above advantages, the proposed methods can produce models that execute much faster than those based on existing simulation tools (LTspice and NGspice). The performance of the proposed methods is validated by modeling two high-speed nonlinear circuits.

Mots clés

Département: Département de génie électrique
URL de PolyPublie: https://publications.polymtl.ca/66256/
Titre de la revue: IEEE Access (vol. 13)
Maison d'édition: Institute of Electrical and Electronics Engineers
DOI: 10.1109/access.2025.3580588
URL officielle: https://doi.org/10.1109/access.2025.3580588
Date du dépôt: 25 juin 2025 17:35
Dernière modification: 17 févr. 2026 17:54
Citer en APA 7: Moradi Chaleshtori, R., Saboohi, A., Faraji, A., Alireza Sadrossadat, S., Moftakharzadeh, A., & Savaria, Y. (2025). Long short-term memory neural network combined with a hybrid-modular clockwork structure for transient modeling of nonlinear circuits. IEEE Access, 13, 107979-107993. https://doi.org/10.1109/access.2025.3580588

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document