Marlon Jeske, Daniel Aloise, Brunilde Sanso
et Mariá C. V. Nascimento
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
Abstract
Predicting the reference signal received power (RSRP) in wireless communication is crucial for improving network performance, allocating resources, and ensuring good signal coverage, especially in advanced technologies like 5G and beyond. To create an accurate prediction model, we need to look at different aspects of the radio environment and understand the importance of each factor. In our study, we suggest using machine learning (ML) to predict RSRP. We analyze the importance of features by studying their impact on the received signal power. We developed an ML approach using 64 features taken from recent literature and new ones proposed in this study from real-world received signal power measurements in outdoor areas, including cities and suburbs. Using this data, we trained a random forest (RF) model for received signal power predictions. After training, we analyzed the importance of each feature to create a simpler ML model that maintains good prediction accuracy. Our results show that we can use only the 25 most important features to build a less complex model with a small error difference of 0.14 dB compared with the original model with 64 features
Mots clés
| Département: |
Département de génie électrique Département de génie informatique et génie logiciel |
|---|---|
| URL de PolyPublie: | https://publications.polymtl.ca/66152/ |
| Titre de la revue: | IEEE Transactions on Antennas and Propagation (vol. 73, no 10) |
| Maison d'édition: | Institute of Electrical and Electronics Engineers |
| DOI: | 10.1109/tap.2025.3576492 |
| URL officielle: | https://doi.org/10.1109/tap.2025.3576492 |
| Date du dépôt: | 12 juin 2025 16:42 |
| Dernière modification: | 11 févr. 2026 03:43 |
| Citer en APA 7: | Jeske, M., Aloise, D., Sanso, B., & Nascimento, M. C. V. (2025). Enhancing reference signal received power prediction accuracy in wireless outdoor settings: a comprehensive feature importance study. IEEE Transactions on Antennas and Propagation, 73(10), 8022-8037. https://doi.org/10.1109/tap.2025.3576492 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
