<  Retour au portail Polytechnique Montréal

Protocol-agnostic and packet-based intrusion detection using a multi-layer deep-learning architecture at the network edge

Rodolphe Laurent Louis Picot, Felipe Gohring de Magalhaes, Ahmad Shahnejat Bushehri, Maroua Ben Atti, Gabriela Nicolescu et Alejandro Quintero

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Intrusion Detection (ID) faces multiple challenges, including the diversity of intrusion types and the risk of false positives and negatives. In an edge computing context, resource constraints further complicate the process, particularly during the training phase, which is computationally intensive. This paper presents a novel approach to ID in network traffic within edge computing environments using a Neural Network (NN) model. The proposed model is designed to align with the layered structure of network packets and has been trained and evaluated on the widely used CIC-IDS2017 cybersecurity dataset. Its protocol-agnostic design and customized preprocessing method enable it to efficiently detect network attacks across multiple protocols while preserving the original packet structure. Unlike existing approaches that transform packets into alternative representations such as images or NLP-based techniques, which introduce additional overhead, our method processes packets directly, eliminating the need for complex components like Recurrent Neural Networks (RNNs) or convolutional layers. Our model is optimized for edge computing by employing a centralized training approach that minimizes resource consumption while allowing flexible deployment on edge devices. Experimental results demonstrate that our approach outperforms existing methods in terms of accuracy, F1-score, recall, and precision when evaluated on a real-world dataset. This work highlights the potential of deep learning in enhancing network security while respecting edge computing constraints.

Mots clés

Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/64351/
Titre de la revue: IEEE Access (vol. 13)
Maison d'édition: Institute of Electrical and Electronics Engineers
DOI: 10.1109/access.2025.3555201
URL officielle: https://doi.org/10.1109/access.2025.3555201
Date du dépôt: 28 mars 2025 10:28
Dernière modification: 15 nov. 2025 00:54
Citer en APA 7: Picot, R. L. L., Gohring de Magalhaes, F., Shahnejat Bushehri, A., Ben Atti, M., Nicolescu, G., & Quintero, A. (2025). Protocol-agnostic and packet-based intrusion detection using a multi-layer deep-learning architecture at the network edge. IEEE Access, 13, 57867-57877. https://doi.org/10.1109/access.2025.3555201

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document