Rodolphe Laurent Louis Picot, Felipe Gohring de Magalhaes, Ahmad Shahnejat Bushehri, Maroua Ben Atti, Gabriela Nicolescu
et Alejandro Quintero
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Intrusion Detection (ID) faces multiple challenges, including the diversity of intrusion types and the risk of false positives and negatives. In an edge computing context, resource constraints further complicate the process, particularly during the training phase, which is computationally intensive. This paper presents a novel approach to ID in network traffic within edge computing environments using a Neural Network (NN) model. The proposed model is designed to align with the layered structure of network packets and has been trained and evaluated on the widely used CIC-IDS2017 cybersecurity dataset. Its protocol-agnostic design and customized preprocessing method enable it to efficiently detect network attacks across multiple protocols while preserving the original packet structure. Unlike existing approaches that transform packets into alternative representations such as images or NLP-based techniques, which introduce additional overhead, our method processes packets directly, eliminating the need for complex components like Recurrent Neural Networks (RNNs) or convolutional layers. Our model is optimized for edge computing by employing a centralized training approach that minimizes resource consumption while allowing flexible deployment on edge devices. Experimental results demonstrate that our approach outperforms existing methods in terms of accuracy, F1-score, recall, and precision when evaluated on a real-world dataset. This work highlights the potential of deep learning in enhancing network security while respecting edge computing constraints.
Mots clés
| Département: | Département de génie informatique et génie logiciel |
|---|---|
| URL de PolyPublie: | https://publications.polymtl.ca/64351/ |
| Titre de la revue: | IEEE Access (vol. 13) |
| Maison d'édition: | Institute of Electrical and Electronics Engineers |
| DOI: | 10.1109/access.2025.3555201 |
| URL officielle: | https://doi.org/10.1109/access.2025.3555201 |
| Date du dépôt: | 28 mars 2025 10:28 |
| Dernière modification: | 15 nov. 2025 00:54 |
| Citer en APA 7: | Picot, R. L. L., Gohring de Magalhaes, F., Shahnejat Bushehri, A., Ben Atti, M., Nicolescu, G., & Quintero, A. (2025). Protocol-agnostic and packet-based intrusion detection using a multi-layer deep-learning architecture at the network edge. IEEE Access, 13, 57867-57877. https://doi.org/10.1109/access.2025.3555201 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
