Kevin-P. Gradwohl, Lukas Cvitkovich, Chen-Hsun Lu, Sebastian Koelling, Maximilian Oezkent, Yujia Liu, Dominic Waldhör, Tibor Grasser, Yann-Michel Niquet, M. Albrecht, Carsten Richter, Oussama Moutanabbir et Jens Martin
Commentaire ou lettre (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (5MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (729kB) |
Abstract
The integration of electron spin qubits on Si/SiGe heterostructures requires precise control of valley splitting associated with conduction band degeneracy. This can be achieved by introducing nanoscale oscillating Ge concentration profiles, known as Wiggle Wells. However, the intermixing and segregation of Ge during growth have hindered their realization. We report the growth of Si/SiGe heterostructures with clear nanoscale composition modulation within the quantum well using molecular beam epitaxy. By oscillation of the growth temperature, Ge segregation is suppressed, achieving a Ge concentration modulation of 30%/nm, an order of magnitude higher than prior results. Tight-binding simulations suggest that Wiggle Well heterostructures with sharp compositional transitions significantly enhance valley splitting, yielding average values exceeding 200 μeV, with energy levels well separated from 0 μeV. Hence, Wiggle Wells are a promising approach for Si-based electronic qubits.
Mots clés
| Département: | Département de génie physique |
|---|---|
| Organismes subventionnaires: | Federal Ministry of Education and Research (BMBF), Leibniz Association, European Union’s Horizon 2020, European Research Council (ERC), NSERC, Canada Research Chairs, Canada Foundation for Innovation, Mitacs, PRIMA Québec, Defence Canada, European Union’s Horizon Europe, U.S. Army Research Office, Air Force Office of Scientific and Research |
| Numéro de subvention: | Project 13N15659, Project K124/2018, 871813, 101055379, 101070700, W911NF-22-1-0277, FA9550-23-1-0763 |
| URL de PolyPublie: | https://publications.polymtl.ca/63275/ |
| Titre de la revue: | Nano Letters (vol. 25, no 11) |
| Maison d'édition: | American Chemical Society (ACS) |
| DOI: | 10.1021/acs.nanolett.4c05326 |
| URL officielle: | https://doi.org/10.1021/acs.nanolett.4c05326 |
| Date du dépôt: | 06 mars 2025 10:45 |
| Dernière modification: | 04 déc. 2025 09:58 |
| Citer en APA 7: | Gradwohl, K.-P., Cvitkovich, L., Lu, C.-H., Koelling, S., Oezkent, M., Liu, Y., Waldhör, D., Grasser, T., Niquet, Y.-M., Albrecht, M., Richter, C., Moutanabbir, O., & Martin, J. (2025). Enhanced nanoscale Ge concentration oscillations in Si/SiGe quantum well through controlled segregation [Commentaire ou lettre]. Nano Letters, 25(11), 4204-4210. https://doi.org/10.1021/acs.nanolett.4c05326 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
