<  Retour au portail Polytechnique Montréal

Effect of freeze-thaw cycles on engineering properties of nano-SiO₂ enhanced microbially induced calcium carbonate precipitation in kaolinite clay

Sara Ghalandarzadeh, Benoit Courcelles, Richard Boudreault, Lukas U. Arenson et Pooneh Maghoul

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (10MB)
Afficher le résumé
Cacher le résumé

Abstract

Microbially Induced Calcium Carbonate Precipitation (MICP) is a nature-based soil stabilization technique, that has substantially lower environmental impacts compared to conventional chemical-based methods. However, its application in fine-grained soils, such as clay, remains challenging due to the soil's plasticity and saturation levels, which can hinder the effectiveness of MICP. Furthermore, the performance of MICP-treated soils under extreme environmental conditions, such as cyclic freeze-thaw (FT) processes common in cold regions, has not been fully explored. This study addresses these challenges by investigating the enhancement of MICP using nano-SiO₂ in kaolinite clay subjected to FT cycles, proposing a novel nano-bio soil stabilization method for cold regions. Samples treated with 30 % bacterial (e.g. Bacillus Pasteurii) and cementation solutions, supplemented with 1.5 % nano-SiO₂ over four weeks of curing time, were subjected to cyclic FT and triaxial compression tests. Treated samples demonstrated significantly higher peak shear strengths compared to untreated samples under varying confining stress conditions. A reduction in strength was observed in the treated samples as the number of FT cycles increased. However, by the sixth FT cycle, the treated samples showed a significant improvement in strength compared to the untreated samples, with increases of 4.00, 4.96, and 3.49 times under confining pressures of 50, 100, and 150 kPa, respectively. These findings highlight the effectiveness of the stabilization method under cyclic FT conditions. Microstructural analyses revealed increased calcium carbonate content and altered soil texture in treated samples, which affirms the effectiveness of the nano-bio stabilization approach.

Mots clés

Département: Département des génies civil, géologique et des mines
Centre de recherche: SIGLab - Laboratoire de recherche en infrastructure durable et géoingénierie
Organismes subventionnaires: NSERC / CRSNG, PRIMA Québec, BGC Engineering Inc., Awn Nanotech, Object Research Systems
Numéro de subvention: ALLRP 576419 - 22
URL de PolyPublie: https://publications.polymtl.ca/62963/
Titre de la revue: Cold Regions Science and Technology (vol. 234)
Maison d'édition: Elsevier
DOI: 10.1016/j.coldregions.2025.104459
URL officielle: https://doi.org/10.1016/j.coldregions.2025.104459
Date du dépôt: 24 févr. 2025 10:27
Dernière modification: 17 oct. 2025 23:48
Citer en APA 7: Ghalandarzadeh, S., Courcelles, B., Boudreault, R., Arenson, L. U., & Maghoul, P. (2025). Effect of freeze-thaw cycles on engineering properties of nano-SiO₂ enhanced microbially induced calcium carbonate precipitation in kaolinite clay. Cold Regions Science and Technology, 234, 104459 (14 pages). https://doi.org/10.1016/j.coldregions.2025.104459

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document