Mohammad Ali Bagheri, Carl-Éric Aubin, Marie-Lyne Nault et Isabelle Villemure
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (11MB) |
|
|
|
Libre accès au plein texte de ce document Vidéo - Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (9MB) |
|
|
|
Libre accès au plein texte de ce document Vidéo - Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (9MB) |
Abstract
Origami-inspired metamaterials have gained significant attention for their ability to mimic the complex mechanical behavior of biological tissues and their potential applications in advanced surgical treatments. Inspired by Kresling origami, we introduced a metamaterial capable of large recoverable deformations. A parametric design explored the effects of changing geometrical parameters on the mechanical properties of the metamaterial. Eighteen designs were fabricated and mechanically tested for practicability assessment and validation purposes. Non-linear finite element method was leveraged to test the entire design space of the metamaterial. Using Bayesian machine learning, the sensitivity of surface to volume ratio, porosity, elastic modulus, strain energy density, and maximum local strain to the design inputs was assessed and their corresponding predictive models were created. The fabricated designs could withstand 80 % and up to 70 % recoverable strain in quasi static and cyclic loading, respectively, while exhibiting a wide range of structural and mechanical properties. From predictive models, elastic modulus of 0.1 Pa to 1.8 KPa was attainable, while having porosities from 49.7 % to 99.9 %. This study demonstrated the feasibility of the design and manufacturing of an origami-inspired super deformable metamaterial with highly-tunable structural and mechanical properties, which can be used for various tissue engineering applications.
Mots clés
| Département: |
Département de génie électrique Département de génie mécanique Institut de génie biomédical |
|---|---|
| Organismes subventionnaires: | TransMedTech - Canada First Research Excellence Fund, NSERC / CRSNG - Create |
| URL de PolyPublie: | https://publications.polymtl.ca/62639/ |
| Titre de la revue: | Materials & Design (vol. 251) |
| Maison d'édition: | Elsevier |
| DOI: | 10.1016/j.matdes.2025.113701 |
| URL officielle: | https://doi.org/10.1016/j.matdes.2025.113701 |
| Date du dépôt: | 10 févr. 2025 11:02 |
| Dernière modification: | 22 oct. 2025 01:28 |
| Citer en APA 7: | Bagheri, M. A., Aubin, C.-É., Nault, M.-L., & Villemure, I. (2025). Mechanical characterization of an origami-inspired super deformable metamaterial with high tunability for tissue engineering. Materials & Design, 251, 113701 (13 pages). https://doi.org/10.1016/j.matdes.2025.113701 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
