Elhoucine Bergou, Neil K. Chada et Youssef Diouane
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
This work focuses on developing and motivating a stochastic version of a wellknown inverse problem methodology. Specifically, we consider the iteratively regularized Gauss–Newton method, originally proposed by Bakushinskii for infinite-dimensional problems. Recent work have extended this method to handle sequential observations, rather than a single instance of the data, demonstrating notable improvements in reconstruction accuracy. In this paper, we further extend these methods to a stochastic framework through mini-batching, introducing a new algorithm, the stochastic iteratively regularized Gauss–Newton method (SIRGNM). Our algorithm is designed through the use randomized sketching. We provide an analysis for the SIRGNM, which includes a preliminary error decomposition and a convergence analysis, related to the residuals. We provide numerical experiments on a 2D elliptic partial differential equation example. This illustrates the effectiveness of the SIRGNM, through maintaining a similar level of accuracy while reducing on the computational time.
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
| Organismes subventionnaires: | EPSRC-UKRI AI for Net Zero Grant: ‘Enabling CO₂ Capture And Storage Projects Using AI’, City University of Hong Kong - Startup grant |
| Numéro de subvention: | EP/Y006143/1 |
| URL de PolyPublie: | https://publications.polymtl.ca/61637/ |
| Titre de la revue: | Inverse Problems (vol. 41, no 1) |
| Maison d'édition: | IOP Publishing |
| DOI: | 10.1088/1361-6420/ad9d72 |
| URL officielle: | https://doi.org/10.1088/1361-6420/ad9d72 |
| Date du dépôt: | 03 janv. 2025 08:46 |
| Dernière modification: | 21 août 2025 00:49 |
| Citer en APA 7: | Bergou, E., Chada, N. K., & Diouane, Y. (2025). A Stochastic iteratively regularized Gauss–Newton method. Inverse Problems, 41(1), 015005 (22 pages). https://doi.org/10.1088/1361-6420/ad9d72 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
